A. Mirme
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Mirme.
European Respiratory Journal | 2001
P. Penttinen; Kl Timonen; P. Tiittanen; A. Mirme; Juhani Ruuskanen; Juha Pekkanen
Airborne particles are associated with adverse health effects and contribute to excess mortality in epidemiological studies. A recent hypothesis proposes that the high numbers of ultrafine (<0.1 microm diameter) particles in ambient air might provoke alveolar inflammation and subsequently cause exacerbations in pre-existing cardiopulmonary diseases. To test the hypothesis adult asthmatics were followed with daily peak expiratory flow (PEF) measurements and symptom and medication diaries for six months, while simultaneously monitoring particulate pollution in ambient air. The associations between daily health endpoints of 57 asthmatics and indicators of air pollution were examined by multivariate regression models. Daily mean number concentration of particles, but not particle mass (PM10 (particle mass <10 microm), PM2.5-10, PM2.5, PM1), was negatively associated with daily PEF deviations. The strongest effects were seen for particles in the ultrafine range. However, the effect of ultrafine particles could not definitely be separated from other traffic generated pollutants, namely nitric oxide, nitrogen dioxide and carbon monoxide. No associations were observed with respiratory symptoms or medication use. Particle mass measurements can be strongly influenced by mechanically produced, soil-derived particles, which may not be associated with adverse health effects. Therefore, air quality monitoring should include particle number concentrations, which mainly reflect ultrafine particles.
Atmospheric Research | 2002
Hannes Tammet; A. Mirme; E. Tamm
The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.
Aerosol Science and Technology | 2011
Mikael Ehn; Heikki Junninen; Siegfried Schobesberger; H. E. Manninen; Alessandro Franchin; Mikko Sipilä; Tuukka Petäjä; Veli-Matti Kerminen; Hannes Tammet; A. Mirme; Sander Mirme; Urmas Hõrrak; Markku Kulmala; Douglas R. Worsnop
Ambient, naturally charged small ions (<2000 Da) were measured in Hyytiälä, Finland, with a mass spectrometer (atmospheric pressure interface time-of-flight, APi-TOF) and two mobility spectrometers (air ion spectrometer, AIS, and balanced scanning mobility analyzer, BSMA). To compare these different instrument types, a mass/mobility conversion and instrumental transfer functions are required to convert high-resolution mass spectra measured by the APi-TOF into low-resolution mobility spectra measured by the AIS and BSMA. A modified version of the Stokes-Millikan equation was used to convert between mass and mobility. Comparison of APi-TOF and BSMA results showed good agreement, especially for sizes above 200 Da (Pearsons R = 0.7–0.9). Below this size, agreement was fair, and broadening BSMA transfer functions improved the correlation. To achieve equally good agreement between APi-TOF and AIS, AIS results needed to be shifted by 1–1.5 mobility channels. The most likely cause was incorrect sizing in the AIS. In summary, the mass and mobility spectrometers complement each other, with the APi-TOF giving superior chemical information, limited to relatively small ions (<2.5 nm diameter), whereas the mobility spectrometers are better suited for quantitative concentration measurements up to 40 nm. The BSMA and AIS were used to infer a transmission function for the APi-TOF, making it possible to give quantitative estimates of the concentrations of detected chemical ions.
Occupational and Environmental Medicine | 2004
Kirsi L. Timonen; Gerard Hoek; Joachim Heinrich; A Bernard; Bert Brunekreef; J. J. de Hartog; Kaarle Hämeri; Angela Ibald-Mulli; A. Mirme; Annette Peters; Pekka Tiittanen; Wolfgang G. Kreyling; Juha Pekkanen
Background: Daily variations in ambient particulate air pollution have been associated with respiratory mortality and morbidity. Aims: To assess the associations between urinary concentration of lung Clara cell protein CC16, a marker for lung damage, and daily variation in fine and ultrafine particulate air pollution. Methods: Spot urinary samples (n = 1249) were collected biweekly for six months in subjects with coronary heart disease in Amsterdam, Netherlands (n = 37), Erfurt, Germany (n = 47), and Helsinki, Finland (n = 47). Ambient particulate air pollution was monitored at a central site in each city. Results: The mean 24 hour number concentration of ultrafine particles was 17.3×103 cm−3 in Amsterdam, 21.1×103 cm−3 in Erfurt, and 17.0×103 cm−3 in Helsinki. The mean 24 hour PM2.5 concentrations were 20, 23, and 13 μg/m3, respectively. Daily variation in ultrafine particle levels was not associated with CC16. In contrast, CC16 concentration seemed to increase with increasing levels of PM2.5 in Helsinki, especially among subjects with lung disorders. No clear associations were observed in Amsterdam and Erfurt. In Helsinki, the CC16 concentration increased by 20.2% (95% CI 6.9 to 33.5) per 10 μg/m3 increase in PM2.5 concentration (lag 2). The respective pooled effect estimate was 2.1% (95% CI −1.3 to 5.6). Conclusion: The results suggest that exposure to particulate air pollution may lead to increased epithelial barrier permeability in lungs.
Journal of Environmental Monitoring | 2005
Jeroen J. de Hartog; Gerard Hoek; A. Mirme; T. Tuch; Gerard Kos; Harry ten Brink; Bert Brunekreef; Josef Cyrys; Joachim Heinrich; Mike Pitz; Timo Lanki; Marko Vallius; Juha Pekkanen; Wolfgang G. Kreyling
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.
Atmospheric Research | 1998
Urmas Hõrrak; A. Mirme; J. Salm; E. Tamm; Hannes Tammet
The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.
Atmospheric Environment | 1996
Auvo Reponen; Juhani Ruuskanen; A. Mirme; Erkki Pärjälä; Gerard Hoek; Willem Roemer; Jari Hosiokangas; Juha Pekkanen; Matti Jantunen
Five different methods for measuring the concentrations of ambient air particles were compared in downtown and suburban areas of a medium sized Northern city in winter and spring: namely total suspended particulates (TSP) measured by HiVol and dichotomous samplers, particles < 10 μm (PM10) measured with a PM10 impactor and a dichotomous sampler, black smoke (BS) measured by the OECD method, and size fractionated particles measured by an electrical aerosol spectrometer (EAS). The BS/PM ratio decreased gradually from winter to spring. The TSP and PM10 measurements correlated highly with each other. All measures of inhalable particles BS, PM10 and EAS-PM1.0−1.0 correlated highly with each other. BS concentrations correlate best with the EAS-PM3.2 fraction. Principal components analysis revealed that the measured BS and TSP come from different sources. The TSP and PM10 measured with the dichotomous sampler showed consistently lower values than the other methods.
Aerosol Science and Technology | 2002
A. Mirme; Wolfgang G. Kreyling; Andrey Khlystov; Harry ten Brink; Juhani Ruuskanen; T. Tuch; Juha Pekkanen
Three aerosol spectrometers measuring the number concentration distribution of particles in the diameter range 0.01 to 2.5 w m were compared by running them side-by-side for 385 h under ambient air conditions in Erfurt, Germany in October 1997. From the spectral data the measured hourly number concentrations in 3 size fractions, the ultrafine fraction (0.01-0.1 w m), the accumulation fraction (0.1-0.5 w m), and the coarse fraction (0.5-2.5 w m), were analyzed. The systematic component of the difference between the instruments was assessed as the geometric mean of the ratio of the measured concentrations (GMR) and the random component as the geometric standard deviation of this ratio (GSR). Previous statistical methods to compare instruments were developed further. A nonlinear multivariate regression method was used to compare the aerosol distribution consisting of several size fractions. Also, the imprecision of the individual instruments (GSI) was estimated. Comparing the instruments within the ultrafine and accumulation fractions, both the GMRs and GSRs ranged between 1.06 and 1.23 and correlations were above 0.98. In the coarse fraction, the GMR of the number concentrations ranged between 0.25 and 4.19, the GSRs between 1.81 and 2.61, and the correlations between 0.72 and 0.85. The GSIs of the instruments were below 1.2 for all fractions but the coarse fraction. To explore possible differences in the classification of particles into the accumulation and coarse fractions, coarse fractions were regressed with the coarse and the accumulation fractions of the other instruments. Using a conversion based on this regression, the GSRs between instruments were minimized to 1.35 and the GSI to below 1.3. In conclusion, the aerosol spectrometers were in good agreement in the ultrafine and accumulation size fractions. The differences in the measured number concentrations in the coarse fraction were effectively corrected by using a regression method taking into account also the concentration in accumulation fraction, which suggests possible differences in particle sizing at 0.5 w m.
Journal of Aerosol Science | 1991
A. Mirme; E. Tamm
Abstract The dynamic measurement errors of the sequential aerosol spectrometers are analyzed.In the case of TSI 3030 the random dynamic error of a measured spectrum fraction concentration may twice exceed its real variability. In the case of a parallel aerosol spectrometer the only dynamic error - smoothing of the quick changes of the spectrum can be minimized by decreasing the measurement time.
Aerosol Science and Technology | 2009
Janek Uin; E. Tamm; A. Mirme
Non-uniformly charged particles cause a major problem in electrical methods for producing standard aerosols, imposing strict limitations on the usability of the obtained standard aerosols. This article gives a quick overview of this problem, examining the ways how differently charged particles affect the generation of standard aerosols, and presenting a new method for producing standard aerosols and avoiding the effects of multiply charged particles, with the key idea that the probability for small particles to have more than one charge is very low. A two-stage aerosol generator is used. Small silver particles (d< 40 nm) generated by homogeneous nucleation of silver vapors obtain in bipolar charger not more than one elementary charge. These condensation nuclei are enlarged by a condensational growth device. Big particles are now also not more than singly charged, and narrow size distribution can be obtained by electrical separation. Properties of standard aerosols produced experimentally by both the conventional and the new method, are compared and the validity of the new idea behind the new method is confirmed.