A. Murat Kaynar
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Murat Kaynar.
American Journal of Respiratory and Critical Care Medicine | 2008
Alexander Hoetzel; Tamas Dolinay; Simone Vallbracht; Yingze Zhang; Hong Pyo Kim; Emeka Ifedigbo; Sean Alber; A. Murat Kaynar; Rene Schmidt; Stefan W. Ryter; Augustine M. K. Choi
RATIONALE Ventilator-induced lung injury (VILI) leads to an unacceptably high mortality. In this regard, the antiinflammatory properties of inhaled carbon monoxide (CO) may provide a therapeutic option. OBJECTIVES This study explores the mechanisms of CO-dependent protection in a mouse model of VILI. METHODS Mice were ventilated (12 ml/kg, 1-8 h) with air in the absence or presence of CO (250 ppm). Airway pressures, blood pressure, and blood gases were monitored. Lung tissue was analyzed for inflammation, injury, and gene expression. Bronchoalveolar lavage fluid was analyzed for protein, cell and neutrophil counts, and cytokines. MEASUREMENTS AND MAIN RESULTS Mechanical ventilation caused significant lung injury reflected by increases in protein concentration, total cell and neutrophil counts in the bronchoalveolar lavage fluid, as well as the induction of heme oxygenase-1 and heat shock protein-70 in lung tissue. In contrast, CO application prevented lung injury during ventilation, inhibited stress-gene up-regulation, and decreased lung neutrophil infiltration. These effects were preceded by the inhibition of ventilation-induced cytokine and chemokine production. Furthermore, CO prevented the early ventilation-dependent up-regulation of early growth response-1 (Egr-1). Egr-1-deficient mice did not sustain lung injury after ventilation, relative to wild-type mice, suggesting that Egr-1 acts as a key proinflammatory regulator in VILI. Moreover, inhibition of peroxysome proliferator-activated receptor (PPAR)-gamma, an antiinflammatory nuclear regulator, by GW9662 abolished the protective effects of CO. CONCLUSIONS Mechanical ventilation causes profound lung injury and inflammatory responses. CO treatment conferred protection in this model dependent on PPAR-gamma and inhibition of Egr-1.
The Annals of Thoracic Surgery | 1992
Mehmet C. Oz; Valluvan Jeevanandam; Craig R. Smith; Mathew R. Williams; A. Murat Kaynar; Robert Frank; Ralph S. Mosca; Robert F. Reiss; Eric A. Rose
A simple and inexpensive means of creating autologous fibrin glue is described that avoids the potential disadvantages of conventionally obtained material. This improvement may allow more widespread use of fibrin glue for operative bleeding.
PLOS ONE | 2008
Tamas Dolinay; Wei Wu; Naftali Kaminski; Emeka Ifedigbo; A. Murat Kaynar; Mária Szilasi; Simon C. Watkins; Stefan W. Ryter; Alexander Hoetzel; Augustine M. K. Choi
Background Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. Methodology and Principle Findings C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3 −/−) or c-Jun-NH2-terminal kinase-1 (jnk1 −/−) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3 −/− or jnk1 −/− mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1−/− mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1−/− mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GADD45α. Functional characterization of MMP8 revealed that mmp8−/− mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. Conclusions We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2010
Yulia Y. Tyurina; Vladimir A. Tyurin; A. Murat Kaynar; Valentyna I. Kapralova; Karla Wasserloos; Jin Li; Mackenzie Mosher; Lindsay Wright; Peter Wipf; Simon Watkins; Bruce R. Pitt; Valerian E. Kagan
Reactive oxygen species have been shown to play a significant role in hyperoxia-induced acute lung injury, in part, by inducing apoptosis of pulmonary endothelium. However, the signaling roles of phospholipid oxidation products in pulmonary endothelial apoptosis have not been studied. Using an oxidative lipidomics approach, we identified individual molecular species of phospholipids involved in the apoptosis-associated peroxidation process in a hyperoxic lung. C57BL/6 mice were killed 72 h after exposure to hyperoxia (100% oxygen). We found that hyperoxia-induced apoptosis (documented by activation of caspase-3 and -7 and histochemical terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of pulmonary endothelium) was accompanied by nonrandom oxidation of pulmonary lipids. Two anionic phospholipids, mitochondria-specific cardiolipin (CL) and extramitochondrial phosphatidylserine (PS), were the two major oxidized phospholipids in hyperoxic lung. Using electrospray ionization mass spectrometry, we identified several oxygenation products in CL and PS. Quantitative assessments revealed a significant decrease of CL and PS molecular species containing C(18:2), C(20:4), C(22:5), and C(22:6) fatty acids. Similarly, exposure of mouse pulmonary endothelial cells (MLEC) to hyperoxia (95% oxygen; 72 h) resulted in activation of caspase-3 and -7 and significantly decreased the content of CL molecular species containing C(18:2) and C(20:4) as well as PS molecular species containing C(22:5) and C(22:6). Oxygenated molecular species were found in the same two anionic phospholipids, CL and PS, in MLEC exposed to hyperoxia. Treatment of MLEC with a mitochondria-targeted radical scavenger, a conjugate of hemi-gramicidin S with nitroxide, XJB-5-131, resulted in significantly lower oxidation of both CL and PS and a decrease in hyperoxia-induced changes in caspase-3 and -7 activation. We speculate that cytochrome c driven oxidation of CL and PS is associated with the signaling role of these oxygenated species participating in the execution of apoptosis and clearance of pulmonary endothelial cells, thus contributing to hyperoxic lung injury.
American Journal of Respiratory Cell and Molecular Biology | 2008
A. Murat Kaynar; A. McGarry Houghton; Esther H. Lum; Bruce R. Pitt; Steven D. Shapiro
Mechanical ventilation, often required to maintain normal gas exchange in critically ill patients, may itself cause lung injury. Lung-protective ventilatory strategies with low tidal volume have been a major success in the management of acute respiratory distress syndrome (ARDS). Volutrauma causes mechanical injury and induces an acute inflammatory response. Our objective was to determine whether neutrophil elastase (NE), a potent proteolytic enzyme in neutrophils, would contribute to ventilator-induced lung injury. NE-deficient (NE-/-) and wild-type mice were mechanically ventilated at set tidal volumes (10, 20, and 30 ml/kg) with 0 cm H2O of positive end-expiratory pressure for 3 hours. Lung physiology and markers of lung injury were measured. Neutrophils from wild-type and NE-/- mice were also used for in vitro studies of neutrophil migration, intercellular adhesion molecule (ICAM)-1 cleavage, and endothelial cell injury. Surprisingly, in the absence of NE, mice were not protected, but developed worse ventilator-induced lung injury despite having lower numbers of neutrophils in alveolar spaces. The possible explanation for this finding is that NE cleaves ICAM-1, allowing neutrophils to egress from the endothelium. In the absence of NE, impaired neutrophil egression and prolonged contact between neutrophils and endothelial cells leads to tissue injury and increased permeability. NE is required for neutrophil egression from the vasculature into the alveolar space, and interfering with this process leads to neutrophil-related endothelial cell injury.
PLOS ONE | 2011
Sachin Yende; Gina D'Angelo; Florian B. Mayr; John A. Kellum; Lisa A. Weissfeld; A. Murat Kaynar; Tammy L. Young; Kaikobad Irani; Derek C. Angus
Background Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease.
Anesthesiology | 2010
Hui-Hua Li; Xiaoli Su; Xuebin Yan; Karla Wasserloos; Wei Chao; A. Murat Kaynar; Zhao-Qian Liu; George D. Leikauf; Bruce R. Pitt; Li-Ming Zhang
Background:The mechanisms of ventilator-induced lung injury, an iatrogenic inflammatory condition induced by mechanical ventilation, are not completely understood. Toll-like receptor 4 (TLR4) signaling via the adaptor protein myeloid differentiation factor 88 (MyD88) is proinflammatory and plays a critical role in host immune response to invading pathogen and noninfectious tissue injury. The role of TLR4-MyD88 signaling in ventilator-induced lung injury remains incompletely understood. Methods:Mice were ventilated with low or high tidal volume (HTV), 7 or 20 ml/kg, after tracheotomy for 4 h. Control mice were tracheotomized without ventilation. Lung injury was assessed by: alveolar capillary permeability to Evans blue albumin, wet/dry ratio, bronchoalveolar lavage analysis for cell counts, total proteins and cytokines, results of histopathological examination of the lung, and plasma cytokine levels. Results:Wild-type mice subjected to HTV had increased pulmonary permeability, inflammatory cell infiltration/lung edema, and interleukin-6/macrophage-inflammatory protein-2 in the lavage compared with control mice. In HTV, levels of inhibitor of &kgr;B &agr; decreased, whereas phosphorylated extracellular signal-regulated kinases increased. TLR4 mutant and MyD88−/− mice showed markedly attenuated response to HTV, including less lung inflammation, pulmonary edema, cell number, protein content, and the cytokines in the lavage. Furthermore, compared with wild-type mice, both TLR4 mutant and MyD88−/− mice had significantly higher levels of inhibitor of &kgr;B &agr; and reduced extracellular signal-regulated kinase phosphorylation after HTV. Conclusions:TLR4-MyD88 signaling plays an important role in the development of ventilator-induced lung injury in mice, possibly through mechanisms involving nuclear factor-&kgr;B and mitogen-activated protein kinase pathways.
PLOS ONE | 2010
Lasse Ramsgaard; Judson M. Englert; Jacob M. Tobolewski; Lauren Tomai; Cheryl L. Fattman; Adriana S. Leme; A. Murat Kaynar; Steven D. Shapiro; Jan J. Enghild; Tim D. Oury
Background The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated. Methodology/Principal Findings Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-β levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice. Conclusions/Significance Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury.
Anesthesia & Analgesia | 2004
Senthilkumar Sadhasivam; A. Murat Kaynar
Vascular lacerations, arteriovenous fistulae, and pseudoaneurysms are rare, but potentially life threatening, complications of lumbar disk surgery. These iatrogenic vascular injuries may present with significant hypotension during the perioperative period. Early diagnosis and surgical repair may decrease morbidity and mortality. We discuss perioperative implications of postdiscectomy vascular injuries in this report.
Anesthesia & Analgesia | 2002
Ruben J. Azocar; Punam Narang; Daniel Talmor; Alan Lisbon; A. Murat Kaynar
IMPLICATIONS We report the case of a patient with a chest radiograph suggestive of intraarterial placement of a central venous catheter. On investigation, the catheter was located in a previously undiagnosed persistent left superior vena cava.