Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Nandakumar is active.

Publication


Featured researches published by A. Nandakumar.


Langmuir | 2010

Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering

A. Nandakumar; Liang Yang; Pamela Habibovic; Clemens van Blitterswijk

Electrospun polymeric scaffolds are used for various tissue engineering applications. In this study, we applied a biomimetic coating method to provide electrospun scaffolds from a block copolymer-poly(ethylene oxide terephthalate)-poly(buthylene terephthalate), with a calcium phosphate layer to improve their bioactivity in bone tissue engineering. The in vitro studies with human mesenchymal stem cells demonstrated cell proliferation on both uncoated and coated samples. No significant effect of calcium phosphate coating was observed on the expression of alkaline phosphatase in vitro. Implantation of scaffold-goat mesenchymal stem cells constructs subcutaneously in nude mice resulted in bone formation in the calcium phosphate coated samples, in contrast to the uncoated ones, where no new bone formation was observed. The results of this study showed that the biomimetic method can successfully be used to coat electrospun scaffolds with a calcium phosphate layer, which improved the in vivo bioactivity of the polymer.


Biomatter | 2013

Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

A. Nandakumar; Ana M.C. Barradas; Jan de Boer; Lorenzo Moroni; Clemens van Blitterswijk; Pamela Habibovic

Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation

N.C. Rivron; Christian C. Raiss; Jun Liu; A. Nandakumar; Carsten Sticht; Norbert Gretz; Roman Truckenmüller; Jeroen Rouwkema; Clemens van Blitterswijk

Large bone defects naturally regenerate via a highly vascularized tissue which progressively remodels into cartilage and bone. Current approaches in bone tissue engineering are restricted by delayed vascularization and fail to recapitulate this stepwise differentiation toward bone tissue. Here, we use the morphogen Sonic Hedgehog (Shh) to induce the in vitro organization of an endothelial capillary network in an artificial tissue. We show that endogenous Hedgehog activity regulates angiogenic genes and the formation of vascular lumens. Exogenous Shh further induces the in vitro development of the vasculature (vascular lumen formation, size, distribution). Upon implantation, the in vitro development of the vasculature improves the in vivo perfusion of the artificial tissue and is necessary to contribute to, and enhance, the formation of de novo mature bone tissue. Similar to the regenerating callus, the artificial tissue undergoes intramembranous and endochondral ossification and forms a trabecular-like bone organ including bone-marrow-like cavities. These findings open the door for new strategies to treat large bone defects by closely mimicking natural endochondral bone repair.


Macromolecular Bioscience | 2010

Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.

A. Nandakumar; Hugo Fernandes; Jan de Boer; Lorenzo Moroni; Pamela Habibovic; Clemens van Blitterswijk

Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer-PolyActive™-to mimic naturally occurring extracellular matrix for in situ bone regeneration. Human mesenchymal stem cells (hMSCs) adhered and proliferated on these scaffolds. Cells on all scaffold types showed an increased metabolic activity with time. On day 4, the metabolic activity of cells cultured on PolyActive™ (PA)-hydroxyapatite (HA)-Col in 1,1,1,3,3,3-hexafluoro-2-propanolhexafluoro-2-propanol (HFIP) was significantly higher than that of cells grown on PA-Col samples. Furthermore, on day 6, cells on PA-HA-Col in HFIP showed significantly higher metabolic activity than those on PA and PA-Col scaffolds. Quantitative PCR analysis for a panel of osteogenic genes showed statistically significant differences between scaffolds. Cells cultured on PA-HA scaffolds had a significantly higher osteonectin and RunX2 expression compared to those on PA-HA-Col scaffolds. Cells on PA-HA-Col in HFIP scaffolds had significantly higher expression of alkaline phosphatase (ALP) and Col 1 compared to PA and PA-Col scaffolds respectively. The bone morphogenetic protein-2 and S100A4 expression of PA-Col and PA-HA-Col constructs was significantly lower than the basal level expression of cells on PA scaffolds. Although not statistically significant in all cases, cells cultured on PA-HA-Col in HFIP and PA-HA scaffolds had the highest expression for most of the genes analysed. The results of the study demonstrate that bioactive composite scaffolds prepared by electrospinning could find potential use in bone regeneration applications.


Small | 2013

A fast process for imprinting micro and nano patterns on electrospun fiber meshes at physiological temperatures.

A. Nandakumar; Roman Truckenmüller; Maqsood Ahmed; Febriyani Damanik; Diogo Reis Santos; Nils Auffermann; Jan de Boer; Pamela Habibovic; Clemens van Blitterswijk; Lorenzo Moroni

Electrospun fiber meshes are patterned at length scales comparable to or lower than their fiber diameter. Simple nano- and microgrooves and closed geometric shapes are imprinted in different tones using a fast imprint process at physiological temperatures. Human mesenchymal stromal cells cultured on patterned scaffolds show differences in cellular morphology and cytoskeleton organization. Microgrooved electrospun fibers support upregulation of alkaline phosphatase and bone morphogenetic protein-2 gene expression when cells are cultured in osteogenic medium.


Acta Biomaterialia | 2013

Monolithic and assembled polymer-ceramic composites for bone regeneration

A. Nandakumar; C. Cruz; Anouk Mentink; Z. Tahmasebi Birgani; Lorenzo Moroni; C.A. van Blitterswijk; Pamela Habibovic

The rationale for the use of polymer-ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA-HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars produced inside stereolithographic moulds that fitted inside the pores of the PA three-dimensional structure (assembled composite scaffolds). Analysis of calcium and phosphate release in a simulated physiological solution, not containing calcium or phosphate, revealed significantly higher values for the HA pillars compared with other scaffolds. Release in simulated body fluid saturated with respect to HA did not show significant differences among the different scaffolds. Human mesenchymal stromal cells were cultured on polymer (3DF), conventional composite (3DF-HA) and assembled composite (HA assembled in 3DF) scaffolds and assessed for morphology, metabolic activity, DNA amount and gene expression of osteogenic markers using real time quantitative polymerase chain reaction (PCR). Scanning electron microscopy images showed that the cells attached to and infiltrated all the scaffolds. Assembled composites had a higher metabolic activity compared with 3DF-HA scaffolds while no significant differences were observed in DNA amounts. Gene expression of osteopontin in the assembled composite was significantly higher compared with the conventional composites. The strategy of composite fabrication by assembly appears to be a promising alternative to the conventional composite fabrication route for scaffolds for bone regeneration.


Archive | 2012

Towards a chondromimetic scaffold for cartilage repair

Rui L. Reis; Valerie Barron; K. Merghani; Lorenzo Moroni; A. Nandakumar; Pamela Habibovic; Georgina Shaw; Cynthia M. Coleman; Clemens van Blitterswijk; Frank Barry; M. Murphy

Adequate cellular in-growth into biomaterials is one of the fundamental requirements in regenerative medicine. Type-I-collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support. However, adequate cell in-growth and cell seeding has been suboptimal. Different densities of collagen scaffolds (0.3% to 0.8% (w/v)) with/without polymer knitting (poly-caprolactone (PCL)) were prepared. The structure of collagen scaffolds was characterized using scanning electronic microscopy (SEM) and HE staining. The mechanical strength of hybrid scaffolds was determined using tensile strength analysis. Cellular penetration and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and urothelium seeding. SEM and HE analysis showed the honeycomb structure and the hybrid scaffolds were adequately connected. The hybrid scaffolds were much stronger than collagen alone. The distribution of the beads and cells were highly dependent on the collagen density: at lower densities the beads and cells were more evenly distributed and penetrated deeper into the scaffold. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a 0.4% hybrid scaffold strengthened with knitting achieved the best cellular distribution.Human adult heart harbors a population of resident progenitor cells that can be isolated by Sca-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes and vascular cells in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, the survival rate and retention is really poor, less than 1% of injected cells being detectable in the hosttissue within few weeks. The present study aimed at investigating the possibility to produce scaffoldless, thick cardiac progenitor cell-derived cardiac patches by thermo-responsive technology. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces obtained by poly-N-isopropylacrylamide (PNIPAAm) surface immobilization. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and produced abundant extracellular matrix, while preserving their phenotype and plasticity. Cell phenotype and viability within the 3D construct were followed for 1 week, showing that no significant differentiation or apoptotic events occurred within the construct. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such approach to deliver stem cells.Spinal cord injury and repair is one of the important focus areas in tissue regeneration. Mechanical trauma caused due to factors such as contusion, compression or involuntary stretching induce post-traumatic secondary tissue damage in many Spinal Cord Injury (SCI) patients. Therefore, there is a need for scaffolds that provide a conducive threedimensionsal (3D) environment for injured cells to attach and grow. In this study we propose to synthesize 3D polymeric scaffolds in order to study the mechanical and adhesive properties & the nature of the interactions between hyaluronan-based (HY) biomaterials and cells and tissues both in vitroandin vivo. Here we have synthesized 3D HY-based hydrogels with robust mechanical and adhesive properties and demonstrate the use of this material for neuronal-related applications such as the treatment of SCI. Cell culture and survivability studies were done with NSC-34 cells. Live/Dead assay performed on the cells revealed significant differences in the staining of live cells and showed increased viability and proliferation. The number of live cells in the HY-based hydrogels with 0.1% collagen showed higher cell numbers compared with the other hydrogels. In this study we show that Injectable HYbased hydrogels with high elasticity, comparable to the mechanical properties of nervous tissue have been used in this study to study their biocompatibility and neuroprotective properties and they show better affinity for neuronal cells.Calcium phosphates (CaP) obtained by biomineralisation in Simulated Boby Fluid have been used for decades to assess the mineralisation capability of biomaterials. Recently, they have been envisioned as potential agents to promote bone formation. In this study, we have fabricated and coated with calcium phosphate melt electrospun scaffolds whereby macropores permit adequate cell migration and nutrient transfer. We have systematically investigated the effect of coating and osteoinduction onto the response of ovine osteoblasts and we observed that the coating up-regulated alkaline phosphatase activity regardless of the in vitro culture conditions. Micro Computed Tomography revealed that only scaffolds cultured in an osteoinductive cocktail were capable of depositing mineralised matrix, and that CaP coated scaffolds were more efficient at promoting mineralisation. Theses scaffolds were subcutaneously implanted in athymic rats and this demonstrated that the osteoinduction was a pre-requisite for bone formation in this ectopic model. It showed that although the bone formation was not significantly different after 8 weeks, the CaP coated scaffolds were superior at inducing bone formation as evidenced by higher levels of mineralisation at earlier time points. This work demonstrated that CaP coating is not sufficient to induce bone formation; however the combination of osteoinduction and CaP coating resulted in earlier bone formation in an ectopic model.Introduction: Bladder regeneration using minced bladder mucosa is an alternative to costly and time-consuming conventional in vitro culturing of urothelial cells. In this method, the uroepithelium ...


Tissue Engineering Part C-methods | 2012

Layer-by-Layer Tissue Microfabrication Supports Cell Proliferation In Vitro and In Vivo

Sylvain Catros; Fabien Guillemot; A. Nandakumar; Sophia Ziane; Lorenzo Moroni; Pamela Habibovic; Clemens van Blitterswijk; Benoit Rousseau; Olivier Chassande; Joëlle Amédée; Jean-Christophe Fricain


Biofabrication | 2012

Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

A. Nandakumar; Z. Tahmasebi Birgani; Diogo Reis Santos; Anouk Mentink; Nils Auffermann; K.O. van der Werf; Martin L. Bennink; Lorenzo Moroni; C.A. van Blitterswijk; Pamela Habibovic


Journal of Tissue Engineering and Regenerative Medicine | 2015

Plug and play: combining materials and technologies to improve bone regenerative strategies

Lorenzo Moroni; A. Nandakumar; Florence Barrère de Groot; Clemens van Blitterswijk; Pamela Habibovic

Collaboration


Dive into the A. Nandakumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan de Boer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Frank Barry

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Valerie Barron

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Manian

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

F. Shannon

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

M. Murphy

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge