Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Nelles is active.

Publication


Featured researches published by A. Nelles.


Journal of Cosmology and Astroparticle Physics | 2014

Polarized radio emission from extensive air showers measured with LOFAR

P. Schellart; S. Buitink; A. Corstanje; J. E. Enriquez; H. Falcke; J.R. Hörandel; M. Krause; A. Nelles; J. P. Rachen; Olaf Scholten; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh

We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.


Physical Review D | 2014

Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

S. Buitink; A. Corstanje; J. E. Enriquez; H. Falcke; J.R. Hörandel; T. Huege; A. Nelles; J. P. Rachen; P. Schellart; Olaf Scholten; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh

The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve longstanding issues such as the transition from Galactic to extra-Galact ...


The Astrophysical Journal | 2013

Constraints on the origin of cosmic rays above 10(18) eV from large-scale anisotropy searches in data of the Pierre Auger Observatory

P. Abreu; A. Aminaei; J. Coppens; S. J. De Jong; H. Falcke; S. Grebe; J.R. Hörandel; S. Jansen; S. Jiraskova; J.L. Kelley; A. Nelles; H. Schoorlemmer; C. Timmermans; G. van Aar; S. van Velzen

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(18) eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.A thorough search for large scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is reported. For the first time, these large scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 1018 eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions. Subject headings: astroparticle physics — cosmic rays The large scale distribution of arrival directions of Ultra-High Energy Cosmic Rays (UHECRs) as a function of the energy is a key observable to provide further understanding of their origin. Above ≃ 0.25 EeV, the most stringent bounds ever obtained on the dipole component in the equatorial plane were recently reported, being below 2% at 99% C.L. for EeV energies (Auger Collaboration 2011a). Such a sensitivity provides some constraints upon scenarios in which dipolar anisotropies could be imprinted in the distribution of arrival directions as the result of the escape of UHECRs from the Galaxy up to the ankle energy (Ptuskin et al. 1993; Candia et al. 2003; Giacinti et al. 2012). On the other hand, if UHECRs above 1 EeV have already a predominant extragalactic origin (Hillas 1967; Blumenthal 1970; Berezinsky et al. 2006; Berezinsky et al. 2004), their angular distribution is expected to be isotropic to a high level. Thus, the study of large scale anisotropies at EeV energies would help in establishing whether the origin of UHECRs is galactic or extragalactic in this energy range. The upper limits aforementioned are based on first harmonic analyses of the right ascension distributions in several energy ranges. The analyses benefit from the almost uniform directional exposure in right ascension of any ground based observatory operating with high duty cycle, but are not sensitive to a dipole component along the Earth rotation axis. In contrast, using the large amount of data collected by the surface detector array of the Pierre Auger Observatory, we report in this letter on searches for dipole and quadrupole patterns significantly standing out above the background noise whose components are functions of both the right ascension and the declination (a detailed description of the present analysis can be found in (Auger Collaboration 2012)).


Astroparticle Physics | 2015

A parameterization for the radio emission of air showers as predicted by CoREAS simulations and applied to LOFAR measurements

A. Nelles; Stijn Buitink; H. Falcke; J.R. Hörandel; T. Huege; P. Schellart

Abstract Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the radio signal at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five fit parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experiments.


Astronomy and Astrophysics | 2014

LOFAR tied-array imaging of Type III solar radio bursts

D. E. Morosan; Peter T. Gallagher; Pietro Zucca; R. A. Fallows; Eoin P. Carley; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; J. Magdalenić; C. Vocks; Hamish A. S. Reid; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; Jaap D. Bregman; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; F. de Gasperin

The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.


Journal of Instrumentation | 2015

Calibrating the absolute amplitude scale for air showers measured at LOFAR

A. Nelles; J.R. Hörandel; T. Karskens; M. Krause; S. Buitink; A. Corstanje; J. E. Enriquez; M. Erdmann; H. Falcke; A. Haungs; R. Hiller; T. Huege; R. Krause; K. Link; M. J. Norden; J. P. Rachen; L. Rossetto; P. Schellart; Olaf Scholten; F.G. Schröder; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; K. Weidenhaupt; Stefan J. Wijnholds; J. Anderson; L. Bähren; M. E. Bell; Marinus Jan Bentum; Philip Best

Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.


Physical Review Letters | 2015

Probing atmospheric electric fields in thunderstorms through radio emission from cosmic-ray induced air showers

P. Schellart; T. n. g. Trinh; S. Buitink; A. Corstanje; J. E. Enriquez; H. Falcke; J.R. Hörandel; A. Nelles; J. P. Rachen; L. Rossetto; Olaf Scholten; S. ter Veen; Satyendra Thoudam; Ute Ebert; C. Koehn; Casper Rutjes; A. Alexov; J. Anderson; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; F. Breitling; John Broderick; M. Brüggen; H. r. Butcher; B. Ciardi; E. de Geus; M. de Vos

We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.


Astroparticle Physics | 2015

The shape of the radio wavefront of extensive air showers as measured with LOFAR

A. Corstanje; P. Schellart; A. Nelles; S. Buitink; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; M. Krause; J. P. Rachen; Olaf Scholten; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; M. van den Akker; A. Alexov; J. Anderson; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; F. de Gasperin; E. de Geus

Extensive air showers, induced by high energy cosmic rays impinging on the Earths atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.


Astronomy and Astrophysics | 2016

Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars with LOFAR

M. Pilia; J. W. T. Hessels; B. W. Stappers; V. I. Kondratiev; M. Kramer; J. van Leeuwen; P. Weltevrede; A. G. Lyne; K. Zagkouris; T. E. Hassall; A. V. Bilous; R.P. Breton; H. Falcke; Jean-Mathias Grießmeier; E. Keane; A. Karastergiou; M. Kuniyoshi; A. Noutsos; S. Oslowski; M. Serylak; C. Sobey; S. ter Veen; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; L. Bîrzan

Context. LOFAR offers the unique capability of observing pulsars across the 10−240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. Aims. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. Methods. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120–167 MHz, 100 profiles) and low band (15–62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. Results. We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories.


Astroparticle Physics | 2015

Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

A. Nelles; P. Schellart; S. Buitink; A. Corstanje; K. D. de Vries; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; Olaf Scholten; S. ter Veen; Satyendra Thoudam; M. van den Akker; J. Anderson; A. Asgekar; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; Jaap D. Bregman; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; H. R. Butcher; B. Ciardi; Adam T. Deller; S. Duscha; J. Eislöffel; R. A. Fallows

Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

Collaboration


Dive into the A. Nelles's collaboration.

Top Co-Authors

Avatar

H. Falcke

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

A. Corstanje

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

J.R. Hörandel

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

P. Schellart

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyendra Thoudam

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

J. P. Rachen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

L. Rossetto

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

S. ter Veen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge