Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. P. Lock is active.

Publication


Featured researches published by A. P. Lock.


Monthly Weather Review | 2005

Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus

Bjorn Stevens; Chin-Hoh Moeng; Andrew S. Ackerman; Christopher S. Bretherton; Andreas Chlond; Stephan R. de Roode; James Edwards; Jean-Christophe Golaz; Hongli Jiang; Marat Khairoutdinov; M.P. Kirkpatrick; D. C. Lewellen; A. P. Lock; Frank Müller; David E. Stevens; Eoin Whelan; Ping Zhu

Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing wa s5ma t thecloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.


Quarterly Journal of the Royal Meteorological Society | 2002

Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land

A. R. Brown; Richard T. Cederwall; Andreas Chlond; Peter G. Duynkerke; J. C. Golaz; Marat Khairoutdinov; D. C. Lewellen; A. P. Lock; M. K. Macvean; Chin-Hoh Moeng; Roel Neggers; A. P. Siebesma; Bjorn Stevens

SUMMARY Large-eddy simulations of the development of shallow cumulus convection over land are presented. Many characteristics of the cumulus layer previously found in simulations of quasi-steady convection over the sea are found to be reproduced in this more strongly forced, unsteady case. Furthermore, the results are shown to be encouragingly robust, with similar results obtained with eight independent models, and also across a range of numerical resolutions. The datasets produced are already being used in the development and evaluation of parametrizations used in numerical weather-prediction and climate models.


Monthly Weather Review | 2009

Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer

Andrew S. Ackerman; M. C. vanZanten; Bjorn Stevens; Verica Savic-Jovcic; Christopher S. Bretherton; Andreas Chlond; Jean-Christophe Golaz; Hongli Jiang; Marat Khairoutdinov; Steven K. Krueger; D. C. Lewellen; A. P. Lock; Chin-Hoh Moeng; Kozo Nakamura; Markus D. Petters; Jefferson R. Snider; Sonja Weinbrecht; Mike A. Zulauf

Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


Journal of Climate | 2011

Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific cross-section intercomparison (GPCI)

Jose A. Teixeira; S. Cardoso; M. Bonazzola; J. Cole; A. DelGenio; Charlotte A. DeMott; Charmaine N. Franklin; Cecile Hannay; Christian Jakob; Y. Jiao; J. Karlsson; Hiroto Kitagawa; M. Kohler; Akira Kuwano-Yoshida; C. LeDrian; Jui-Lin Li; A. P. Lock; Martin Miller; Pascal Marquet; João Paulo Martins; Carlos R. Mechoso; E. v. Meijgaard; I. Meinke; Pedro M. A. Miranda; Dmitrii Mironov; Roel Neggers; Hua-Lu Pan; David A. Randall; Philip J. Rasch; B. Rockel

AbstractA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ—the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June–July–August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the co...


Journal of Advances in Modeling Earth Systems | 2013

CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

Minghua Zhang; Christopher S. Bretherton; Peter N. Blossey; Phillip H. Austin; Julio T. Bacmeister; Sandrine Bony; Florent Brient; Suvarchal-Kumar Cheedela; Anning Cheng; Anthony D. Del Genio; Stephan R. de Roode; Satoshi Endo; Charmaine N. Franklin; Jean-Christophe Golaz; Cecile Hannay; Thijs Heus; Francesco Isotta; Jean-Louis Dufresne; In-Sik Kang; Hideaki Kawai; Martin Köhler; Vincent E. Larson; Yangang Liu; A. P. Lock; Ulrike Lohmann; Marat Khairoutdinov; Andrea Molod; Roel Neggers; Philip J. Rasch; Irina Sandu

CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the “NESTS” negative cloud feedback and the “SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence—Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.


Journal of Climate | 2012

The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds

Alejandro Bodas-Salcedo; Keith D. Williams; P. R. Field; A. P. Lock

AbstractThe authors study the role of clouds in the persistent bias of surface downwelling shortwave radiation (SDSR) in the Southern Ocean in the atmosphere-only version of the Met Office model. The reduction of this bias in the atmosphere-only version is important to minimize sea surface temperature biases when the atmosphere model is coupled to a dynamic ocean. The authors use cloud properties and radiative fluxes estimates from the International Satellite Cloud Climatology Project (ISCCP) and apply a clustering technique to classify clouds into different regimes over the Southern Ocean. Then, they composite the cloud regimes around cyclone centers, which allows them to study the role of each cloud regime in a mean composite cyclone. Low- and midlevel clouds in the cold-air sector of the cyclones are responsible for most of the bias. Based on this analysis, the authors develop and test a new diagnosis of shear-dominated boundary layers. This change improves the simulation of the SDSR through a better s...


Monthly Weather Review | 2005

Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer

Ping Zhu; Christopher S. Bretherton; M. Kohler; Anning Cheng; Andreas Chlond; Quanzhen Geng; Phil Austin; Jean-Christophe Golaz; Geert Lenderink; A. P. Lock; Bjorn Stevens

Ten single-column models (SCMs) from eight groups are used to simulate a nocturnal nonprecipitating marine stratocumulus-topped mixed layer as part of an intercomparison organized by the Global Energy and Water Cycle Experiment Cloud System Study, Working Group 1. The case is idealized from observations from the Dynamics and Chemistry of Marine Stratocumulus II, Research Flight 1. SCM simulations with operational resolution are supplemented by high-resolution simulations and compared with observations and large-eddy simulations. All participating SCMs are able to maintain a sharp inversion and a mixed cloud-topped layer, although the moisture profiles show a slight gradient in the mixed layer and produce entrainment rates broadly consistent with observations, but the liquid water paths vary by a factor of 10 after onl y1ho fsimulation at both high and operational resolution. Sensitivity tests show insensitivity to activation of precipitation and shallow convection schemes in most models, as one would observationally expect for this case.


Philosophical Transactions of the Royal Society A | 2015

The impact of parametrized convection on cloud feedback.

Mark J. Webb; A. P. Lock; Christopher S. Bretherton; Sandrine Bony; Jason N. S. Cole; A. Idelkadi; S.M. Kang; Tsuyoshi Koshiro; Hideaki Kawai; Tomoo Ogura; Romain Roehrig; Y. Shin; Thorsten Mauritsen; Steven C. Sherwood; Jessica Vial; Masahiro Watanabe; Woelfle; Ming Zhao

We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed.


Journal of Geophysical Research | 2007

A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer

Matthew C. Wyant; Christopher S. Bretherton; Andreas Chlond; Brian M. Griffin; Hiroto Kitagawa; Cara-Lyn Lappen; Vincent E. Larson; A. P. Lock; Sungsu Park; Stephan R. de Roode; Junya Uchida; Ming Zhao; Andrew S. Ackerman

Received 12 February 2007; revised 11 July 2007; accepted 2 August 2007; published 27 December 2007. [1] This study presents an intercomparison of single-column model simulations of a nocturnal heavily drizzling marine stratocumulus-topped boundary layer. Initial conditions and forcings are based on nocturnal flight observations off the coast of California during the DYCOMS-II field experiment. Differences in turbulent and microphysical parameterizations between models were isolated by slightly idealizing and standardizing the specification of surface and radiative fluxes. For most participating models, the case was run at both typical operational vertical resolution of about 100 m and also at high vertical resolution of about 10 m. As in prior stratocumulus intercomparisons, the simulations quickly develop considerable scatter in liquid water path (LWP) between models. However, the simulated dependence of cloud base drizzle fluxes on LWP in most models is broadly consistent with recent observations. Sensitivity tests with drizzle turned off show that drizzle substantially decreases LWP for many models. The sensitivity of entrainment rate to drizzle is more muted. Simulated LWP and entrainment are also sensitive to the inclusion of cloud droplet sedimentation. Many models underestimate the fraction of drizzle that evaporates below cloud base, which may distort the simulated feedbacks of drizzle on turbulence, entrainment, and LWP.


Journal of the Atmospheric Sciences | 2015

The Turbulent Structure and Diurnal Growth of the Saharan Atmospheric Boundary Layer

Luis Garcia-Carreras; Douglas J. Parker; John H. Marsham; Philip D. Rosenberg; Ian M. Brooks; A. P. Lock; Franco Marenco; J. B. McQuaid; Matthew Hobby

The turbulent structure and growth of the remote Saharan atmospheric boundary layer (ABL) is described with in situ radiosonde and aircraft measurements and a large-eddy simulation model. A month of radiosonde data from June 2011 provides a mean profile of the midday Saharan ABL, which is characterized by a well-mixed convective boundary layer, capped by a small temperature inversion (,1K) and a deep, near-neutral residual layer. The boundary layer depth varies by up to 100% over horizontal distances of a few kilometers due to turbulent processes alone. The distinctive vertical structure also leads to unique boundary layer processes, such as detrainment of the warmest plumes across the weak temperature inversion, which slows down the warming and growth of the convective boundary layer. As the boundary layer grows, overshooting plumes can also entrain freetropospheric air into the residual layer, forming a second entrainment zone that acts to maintain the inversion above the convective boundary layer, thus slowing down boundary layer growth further. A single-column model is unable to accurately reproduce the evolution of the Saharan boundary layer, highlighting the difficulty of representing such processes in large-scale models. These boundary layer processes are special to the Sahara, and possiblyhot, dry,desertenvironmentsingeneral, andhaveimplicationsforthelarge-scalestructureoftheSaharan heat low. The growth of the boundary layer influences the vertical redistribution of moisture and dust, and the spatial coverage and duration of clouds, with large-scale dynamical and radiative implications.

Collaboration


Dive into the A. P. Lock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina Sandu

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Ackerman

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Stephan R. de Roode

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anning Cheng

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge