Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. P. Lundgren is active.

Publication


Featured researches published by A. P. Lundgren.


Classical and Quantum Gravity | 2016

The PyCBC search for gravitational waves from compact binary coalescence

S. A. Usman; A. Nitz; I. W. Harry; C. Biwer; D. A. Brown; M. Cabero; C. D. Capano; Tito Dal Canton; T. Dent; S. Fairhurst; Marcel S. Kehl; D. G. Keppel; Badri Krishnan; A. Lenon; A. P. Lundgren; Alex B. Nielsen; L. Pekowsky; Harald P. Pfeiffer; P. R. Saulson; Matthew West; J. L. Willis

We describe the PyCBC search for gravitational waves from compactobject binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGO’s sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30% increase in sensitive volume for binary neutron star systems over previous searches.


Physical Review D | 2012

Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

D. A. Brown; I. W. Harry; A. P. Lundgren; A. Nitz

The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins,


Physical Review D | 2014

Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors

Tito Dal Canton; A. Nitz; A. P. Lundgren; Alex B. Nielsen; D. A. Brown; T. Dent; I. W. Harry; Badri Krishnan; Andrew J. Miller; K. Wette; K. Wiesner; J. L. Willis

cmathbf{J}/GM^2


Physical Review D | 2014

Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO

I. W. Harry; A. Nitz; D. A. Brown; A. P. Lundgren; E. Ochsner; D. G. Keppel

, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.


Physical Review D | 2013

Accuracy of gravitational waveform models for observing neutron-star--black-hole binaries in Advanced LIGO

A. Nitz; A. P. Lundgren; D. A. Brown; Evan Ochsner; D. G. Keppel; I. W. Harry

detectors, and an estimate of the rate of background events. We restrict attention to neutron star{black hole (NS-BH) binary systems, and we compare a search using non-spinning templates to one using templates that include spins aligned with the orbital angular momentum. To run the searches we implement the binary inspiral matched-lter computation in PyCBC, a new software toolkit for gravitational-wave data analysis. We nd that the inclusion of aligned-spin eects signicantly increases the astrophysical reach of the search. Considering astrophysical NS-BH systems with non-precessing black hole spins, for dimensionless spin components along the orbital angular momentum uniformly distributed in ( 1; 1), the sensitive volume of the search with aligned-spin templates is increased by 50% compared to the non-spinning search; for signals with aligned spins uniformly distributed in the range (0:7; 1), the increase in sensitive volume is a factor of 10.


Geophysical Journal International | 2015

Ground-based optical atomic clocks as a tool to monitor vertical surface motion

Ruxandra Bondarescu; Andreas Schärer; A. P. Lundgren; György Hetényi; Nicolas Houlié; Philippe Jetzer; Mihai Bondarescu

The first direct detection of neutron-star– black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star– black-hole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum when the system is emitting gravitational waves in Advanced LIGO’s and Advanced Virgo’s sensitive band. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black hole’s angular momentum is not aligned with the orbital angular momentum, it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black hole’s angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of (10+1.4)M_⊙ neutron-star– black-hole systems with isotropic spin distributions would be reduced by 33%–37% in comparison to a hypothetical perfect search at a fixed signal-to-noise ratio threshold. The error in this measurement is due to uncertainty in the post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star– black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has nonzero angular momentum that is aligned with the orbital angular momentum. With this bank we find that the detection rate of (10+1.4)M_⊙ neutron-star– black-hole systems would be reduced by 26%–33%. Systems that will not be detected are ones where the precession of the orbital plane causes the gravitational-wave signal to match poorly with nonprecessing filter waveforms. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star– black-hole binaries.


Physical Review D | 2014

Testing scalar-tensor theories and parametrized post-Newtonian parameters in Earth orbit

Andreas Schärer; Raymond Angélil; Ruxandra Bondarescu; Philippe Jetzer; A. P. Lundgren

Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Advanced LIGO will be sensitive to the inspiral of a 1.4M⊙ neutron star into a 10M⊙ black hole to a maximum distance of ∼900u2009u2009Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a neutron-star–black-hole binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of currently available post-Newtonian templates to model the gravitational waves emitted during the inspiral phase of neutron-star–black-hole binaries. We restrict to the case where the spin of the black hole is aligned with the orbital angular momentum and compare several post-Newtonian approximants. We examine restricted amplitude post-Newtonian waveforms that are accurate to third-and-a-half post-Newtonian order in the orbital dynamics and complete to second-and-a-half post-Newtonian order in the spin dynamics. We also consider post-Newtonian waveforms that include the recently derived third-and-a-half post-Newtonian order spin-orbit correction and the third post-Newtonian order spin-orbit tail correction. We compare these post-Newtonian approximants to the effective-one-body waveforms for spin-aligned binaries. For all of these waveform families, we find that there is a large disagreement between different waveform approximants, starting at low to moderate black hole spins, particularly for binaries where the spin is antialigned with the orbital angular momentum. The match between the TaylorT4 and TaylorF2 approximants is ∼0.8 for a binary with m_BH/m_NS∼4 and χ_BH = cJ_BH/Gm^(2)_(BH)∼0.4. We show that the divergence between the gravitational waveforms begins in the early inspiral at v∼0.2 for χ_BH∼0.4. Post-Newtonian spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron-star–black-hole binaries. The strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information from detected systems with Advanced LIGO and Advanced Virgo.


Physical Review D | 2014

Single-spin precessing gravitational waveform in closed form

A. P. Lundgren; R. O’Shaughnessy

SUMMARY According to general relativity, a clock experiencing a shift in the gravitational potential �U will measure a frequency change given byf/f ≈ �U/c 2 . The best clocks are optical clocks. After about 7 hr of integration they reach stabilities off/f ∼ 10 −18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clocks position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earths surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.


Physical Review D | 2013

Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis

F. Ohme; Alex B. Nielsen; D. G. Keppel; A. P. Lundgren

We compute the PPN parameters


Classical and Quantum Gravity | 2015

Improving the data quality of Advanced LIGO based on early engineering run results

L. K. Nuttall; T. J. Massinger; J. S. Areeda; J. Betzwieser; S. Dwyer; A. Effler; Rebecca Fisher; P. Fritschel; J. S. Kissel; A. P. Lundgren; D. M. Macleod; D. V. Martynov; J. McIver; A. Mullavey; D. Sigg; J. R. Smith; G. Vajente; A. R. Williamson; C. C. Wipf

gamma

Collaboration


Dive into the A. P. Lundgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge