Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Pantalone is active.

Publication


Featured researches published by A Pantalone.


International Journal of Immunopathology and Pharmacology | 2013

Vascular Endothelial Growth Factor (VEGF), Mast Cells and Inflammation

Y.B. Shaik-Dasthagirisaheb; G. Varvara; Giovanna Murmura; Andrea Saggini; Gabriele Potalivo; Auro Caraffa; P. Antinolfi; Stefano Tetè; D. Tripodi; F. Conti; Cianchetti E; Elena Toniato; M Rosati; Pio Conti; Lorenza Speranza; A Pantalone; Saggini R; Theoharis C. Theoharides; Franco Pandolfi

Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.


International Journal of Immunopathology and Pharmacology | 2014

Role of Mast Cells in Atherosclerosis: A Classical Inflammatory Disease

Spinas E; S. K. Kritas; Andrea Saggini; A. Mobili; Auro Caraffa; P. Antinolfi; A Pantalone; M Tei; A Speziali; Raoul Saggini; Pio Conti

Atherosclerosis is an inflammatory disease and hyperlipidaemia is one of the main risk factors for aging, hypertension and diabetes. Variance in plasma LDL cholesterol concentration may be associated with differences in cardiovascular disease risk and high levels of lipids are associated with increased risk of developing atherosclerosis. Macrophages, which generate pro-inflammatory cytokines, mainly interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-alpha), are deeply involved in atherosclerosis, as well as mast cells which generate several cytokines, including IL-6 and IFN-gamma, and chemokines such as eotaxin, MCP-1 and RANTES involved in monocyte recruitment and differentiation in the arterial wall. In addition, mast cells participate in lipid retention and vascular cell remodeling, and are mediators of innate and adaptive immunity during atherosclerosis. Mast cells which accumulate in the human arterial intima and adventitia during atherosclerotic plaque progression, release vasoactive and angiogenic compounds, and pro-inflammatory mediators, such as arachidonic acid metabolites, histamine, cytokines/chemokines, platelet activating factor (PAF) and proteolytic enzymes. Mast cells can be activated by pro-inflammatory stimuli, including cytokines, hypercholesterolemia, and hyperglycemia, and trigger the endothelial expression of adhesion molecules such as P-selectin, vascular cell adhesion molecule-1 (VCAM-1) and chemokines which mediate the recruitment and adhesion of leukocytes. The participation of mast cells in atherosclerosis is still an enigma and it may be of therapeutic interest to clarify this process.


International Journal of Immunopathology and Pharmacology | 2013

Impact of mast cells on the skin.

Spiros K. Kritas; Andrea Saggini; G. Varvara; Giovanna Murmura; Auro Caraffa; P. Antinolfi; Elena Toniato; A Pantalone; G. Neri; S. Frydas; M Rosati; Matteo Maria Tei; A. Speziali; Saggini R; Franco Pandolfi; Giuliano Giorgio Cerulli; Theoharis C. Theoharides; Pio Conti

When through the skin a foreign antigen enters it provokes an immune response and inflammatory reaction. Mast cells are located around small vessels that are involved in vasaldilation. They mature under the influence of local tissue to various cytokines. Human skin mast cells play an essential role in diverse physiological and pathological processes and mediate immediate hypersensitive reaction and allergic diseases. Injection of anti-IgE in the skin or other agents that directly activate mast cells may cause the decrease in vascular tone, leakage of plasma and may lead to a fall in blood pressure with fatal anaphylactic shock. Skin mast cells are also implicated as effector cells in response to multiple parasites such as Leishmania which is primarily characterized by its tissue cutaneous tropism. Activated macrophages by IFNγ, cytotoxic T cells, activated mast cells and several cytokines are involved in the elimination of the parasites and immunoprotection. IL-33 is one of the latest cytokines involved in IgE-induced anaphylaxis and in the pathogenesis of allergic skin disorders. IL-33 has been shown in epidermis of patients with psoriasis and its skin expression causes atopic dermatitis and it is crucial for the development of this disease. Here we review the impact of mast cells on the skin.


International Journal of Immunopathology and Pharmacology | 2013

Impact of Capsaicin on Mast Cell Inflammation

S. Frydas; G. Varvara; Giovanna Murmura; Andrea Saggini; Auro Caraffa; P. Antinolfi; Stefano Tetè; D. Tripodi; F. Conti; Cianchetti E; Elena Toniato; M Rosati; Lorenza Speranza; A Pantalone; Saggini R; Lm Di Tommaso; Theoharis C. Theoharides; Pio Conti; Franco Pandolfi

Mast cells are inflammatory cells, and they are prominent in inflammatory diseases such as allergy and asthma. Mast cells possess high-affinity receptors for IgE (FCεRI) and the cross-linking of these receptors is essential to trigger the secretion of granules containing arachidonic acid metabolism [such as prostaglandin (PG) D2, leukotriene (LT) B4, and LTC4], histamine, cytokines, chemokines, and proteases, including mast cell-specific chymases and tryptases. Activation of mast cells provokes the secretion of cytokines and mediators that are responsible for the pathologic reaction of immediate hypersensitivity. Sensory nerve stimulation by irritants and other inflammatory mediators provokes the release of neuropeptides, causing an increase in vascular permeability, plasma extravasation and edema. Trigeminal nerve stimulation actives dura mast cells and increases vascular permeability, effects inhibited by capsaicin. Capsaicin causes release of sensory neuropeptide, catecholamines and vasodilation. Several studies have reported that capsaicin is effective in relief and prevention of migraine headaches, improves digestion, helps to prevent heart disease, and lowers blood cholesterol and blood pressure levels. The findings reported in these studies may have implications for the pathophysiology and possible therapy of neuroinflammatory disorders.


International Journal of Immunopathology and Pharmacology | 2014

Nerve growth factor interactions with mast cells

Sk Kritas; Auro Caraffa; P. Antinolfi; Andrea Saggini; A Pantalone; M Rosati; M Tei; A Speziali; Saggini R; Franco Pandolfi; Giuliano Giorgio Cerulli; Pio Conti

Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.


International Journal of Immunopathology and Pharmacology | 2014

Corticotropin-releasing hormone,microglia and mental disorders

S. K. Kritas; Andrea Saggini; Giuliano Giorgio Cerulli; Auro Caraffa; P. Antinolfi; A Pantalone; M Rosati; M Tei; A Speziali; Saggini R; Pio Conti

Microglia derive from mononuclear myeloid progenitors and are a major glial complement of the central nervous system. When microglia are activated they secrete inflammatory cytokines and toxic mediators which amplify the inflammatory response. In addition, the microglia inflammatory products are implicated in the neuronal destruction usually observed in various neurodegenerative diseases. Microglia cells express corticotropin releasing hormone (CRH) receptors, and activation of microglia by CRH releases bioactive molecules which have a biological effect in the brain and regulate several neurological diseases. CRH plays a pivotal role in stress responses and is a key mediator of the hypothalamic-pituitary-adrenocortical system. CRH is expressed in human mast cells, leading to autocrine effects and participates in inflammatory response together with neuropeptides, and stimulates mast cells. IL-33-activated mast cells release vascular endothelial growth factor in response to CRH and act synergistically to increase vascular permeability. CRH also up-regulates IL-18 expression by increasing intracellular reactive oxygen in microglia cells. Here we report the relationship between CRH, microglia and mental disorders.


European Journal of Inflammation | 2014

ASTHMA AND MAST CELL BIOLOGY

Sk Kritas; Andrea Saggini; Giuliano Giorgio Cerulli; Andrea Speziali; Auro Caraffa; P. Antinolfi; A Pantalone; M Rosati; Matteo Maria Tei; Raoul Saggini; Pio Conti

Asthma is a chronic inflammatory disease of the lung and its pathophysiology is initiated by mast cell activation in response to the antigen binding to IgE receptor as well as by TH2 cell activation. Mast cells are well established effector cells in asthma where they exacerbate the inflammatory response, playing a key role in early phase, degranulating and increasing histamine. Human mast cells possess high affinity IgE receptors and are ubiquitous but predominantly localized in mucosal and connective tissue and are distributed along blood vessels. There are two types of mast cells: connective tissue mast cells (TC) and mucosal mast cells (T mast cells). TC mast cells contain more heparin, whereas T mast cells contain more chondroitin sulfate. In asthma, mast cell activation can trigger degranulation, releasing secretory granule complex and preformed mediators, such as histamine and proteases, along with the synthesis of leukotrines and prostaglandins, and induction of cytokines and chemokines. Leukotrine inhibitors and omalizumab, which inhibits IgE, both relieve the asthma exacerbation when administered to humans and permit to reduce the use of other drugs. The release of cytokines by mast cells, such as TNF-alpha, IL-1, IL-6 and IL-33, participate in the pathogenesis of asthma. Stress worsens asthma, and this effect is also mediated by mast cell activation through the release of cytokines. Administration of IL-33 in experimental animals provokes pathological effects in the mucosal tissues and augments antibody IgE and IgA in blood vessels. Here, we report the impact of mast cell biology in asthma pathogenesis.


International Journal of Immunopathology and Pharmacology | 2014

Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab.

S. K. Kritas; Andrea Saggini; Giuliano Giorgio Cerulli; Auro Caraffa; P. Antinolfi; A Pantalone; M Rosati; M Tei; A Speziali; Raoul Saggini; A Frydas; Pio Conti

Mast cells (MCs) derive from a distinct precursor in the bone marrow and are predominantly found in tissues at the interface between the host and the external environment where they can secrete mediators without overt degranulation. Mast cells mature under local tissue microenvironmental factors and are necessary for the development of allergic reactions, through crosslinking of their surface receptors for IgE (FcεRI), leading to degranulation and the release of vasoactive, pro-inflammatory and nociceptive mediators that include histamine, pro-inflammatory and anti-inflammatory cytokines and proteolytic enzymes. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demylination within the central nervous system. MCs are involved in the pathogenesis of MS by generating various vasoactive mediators and cytokines and participate in the destruction of the myelin sheath and the neuronal cells. The process of the development of demyelinating plaques in MS is probably linked with the rupture of the blood-brain barrier by MC products. The effects of natalizumab, which is a very effective drug in reducing the annualized relapse rate and other relapse-based endpoints, are discussed. Here, we report the relationship between MCs and MS.


European Journal of Inflammation | 2014

IgE generation and mast cell activation

Sk Kritas; Auro Caraffa; P. Antinolfi; Andrea Saggini; A Pantalone; G. Neri; M Rosati; Matteo Maria Tei; Andrea Speziali; Saggini R; Franco Pandolfi; Giuliano Giorgio Cerulli; Pio Conti

IgE is an important marker for allergy and plays a central role in the induction of allergic diseases through its binding of the high affinity receptor on mast cells. Mast cells can influence B cell survival, proliferation and differentiation into CD138+cells. Among TH2 cytokines, interleukin (IL)-4 and IL-13 are responsible for class-switching in B cells which resolves in production of allergen-specific IgE antibodies that bind to specific receptor on mast cells. IgE synthesis by B cells is regulated by CD40 ligand, IL-4 and interferon-gamma, therefore inhibition of B cell antigen-specific IgE may prevent the cleavage of CD23 from B cells, having a therapeutic impact which also includes the removal of circulating free IgE, omalizumab, corticosteroids, mast cell stabilizers, leukotriene receptor antagonist, and others. B cell differentiation into IgE-producing cells requires two signals provided by TH2 cells and IL-4, however IL-4, IL-1 and IL-10 as well as several hormones are critical for the development of TH2 cells, while cytokines, such as interferon (IFN)-alpha, IFN-gamma, IL-12 and transforming growth factor (TGF)-beta play a negative role. However, the exact mechanism of this process has not yet been defined.


European Journal of Inflammation | 2014

Obesity, Inflammation and Neurological Alterations

Spinas E; Andrea Saggini; S. K. Kritas; Giuliano Giorgio Cerulli; Auro Caraffa; P. Antinolfi; A Pantalone; A Frydas; Matteo Maria Tei; Andrea Speziali; Raoul Saggini; Pio Conti

Inflammation, neurodegeneration, imbalance of neurotransmitter systems, oxidative stress and depression are all risk factors for obesity. There is evidence regarding the cross-talk between adipose tissue and the immune system and obese patients may show an alteration of immune functions with major depression, including immune suppression with reduced T-cell and macrophage activity. Obesity is mediated by inflammatory cells such as lymphocytes, macrophages and mast cells which release pro-inflammatory cytokines and chemokines. Obesity-induced leukocyte infiltrations in adipose tissue cause cytokine/chemokine release and inflammation. Here, we report the relationship between obesity, neurological alterations and inflammation.

Collaboration


Dive into the A Pantalone's collaboration.

Top Co-Authors

Avatar

Andrea Saggini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pio Conti

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Pandolfi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Saggini R

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. K. Kritas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge