Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Pele is active.

Publication


Featured researches published by A. Pele.


Classical and Quantum Gravity | 2015

Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

F. Matichard; B. Lantz; R. Mittleman; K. Mason; J. S. Kissel; B. Abbott; S. Biscans; J. McIver; R. Abbott; S. Abbott; E. Allwine; S. Barnum; J. Birch; C. Celerier; Damon A. Clark; D. C. Coyne; D. DeBra; R. T. Derosa; M. Evans; S. Foley; P. Fritschel; J. A. Giaime; C. Gray; G. Grabeel; J. Hanson; C. Hardham; M. Hillard; W. Hua; C. Kucharczyk; M. Landry

The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGOs stringent requirements and robustly supports the operation of the two detectors.


Physical Review Letters | 2015

Observation of Parametric Instability in Advanced LIGO

M. Evans; Slawek Gras; P. Fritschel; John B. Miller; L. Barsotti; D. V. Martynov; A. F. Brooks; D. C. Coyne; R. Abbott; R. Adhikari; Koji Arai; Rolf Bork; Bill Kells; J. G. Rollins; N. D. Smith-Lefebvre; G. Vajente; Hiroaki Yamamoto; C. Adams; S. M. Aston; Joseph Betzweiser; V. V. Frolov; Adam Mullavey; A. Pele; J. H. Romie; M. Thomas; Keith Thorne; S. Dwyer; K. Izumi; Keita Kawabe; D. Sigg

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.


Classical and Quantum Gravity | 2018

Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors.

S. Biscans; J. Warner; R. Mittleman; C. C. Buchanan; M. W. Coughlin; M. Evans; H. Gabbard; J. Harms; B. Lantz; N. Mukund; A. Pele; Charles Pezerat; Pascal Picart; H. Radkins; T. J. Shaffer

Advanced gravitational-wave detectors such as the Laser Interferometer Gravitational-Wave Observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they are expected to observe changes in the space-time continuum of less than one thousandth of the diameter of a proton. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data until the detectors can be returned to their operating states. An earthquake early-warning system, as well as a prediction model have been developed to help understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by 30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.


Review of Scientific Instruments | 2016

Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

G. Ciani; M. A. Arain; S. Aston; D. Feldbaum; P. Fulda; J. Gleason; M. C. Heintze; R. M. Martin; C. L. Mueller; D. Nanda Kumar; A. Pele; D. H. Reitze; P. Sainathan; D. B. Tanner; L. Williams; G. Mueller

We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the input optics subsystem of the Advanced Laser Interferometer Gravitational Wave Observatory. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three.

Collaboration


Dive into the A. Pele's collaboration.

Top Co-Authors

Avatar

M. Evans

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. C. Coyne

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Fritschel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Abbott

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Mittleman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Biscans

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. F. Brooks

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam Mullavey

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar

B. Abbott

University of Oklahoma

View shared research outputs
Researchain Logo
Decentralizing Knowledge