Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Pellizzoni is active.

Publication


Featured researches published by A. Pellizzoni.


Science | 2011

Discovery of powerful gamma-ray flares from the Crab Nebula.

A. Bulgarelli; V. Vittorini; A. Pellizzoni; E. Striani; Patrizia A. Caraveo; Martin C. Weisskopf; Allyn F. Tennant; G. Pucella; Alessio Trois; Enrico Costa; C. Pittori; F. Verrecchia; E. Del Monte; R. Campana; M. Pilia; A. De Luca; I. Donnarumma; D. Horns; C. Ferrigno; C. O. Heinke; Massimo Trifoglio; F. Gianotti; S. Vercellone; A. Argan; G. Barbiellini; Paolo Walter Cattaneo; Andrew W. Chen; T. Contessi; F. D’Ammando; G. DeParis

Gamma-ray observations of the Crab Nebula by two different space telescopes challenge particle acceleration theory. The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega–electron volts to 10 giga–electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.


Journal of Geophysical Research | 2010

Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite

M. Marisaldi; Fabio Fuschino; Claudio Labanti; M. Galli; F. Longo; Ettore Del Monte; G. Barbiellini; A. Giuliani; E. Moretti; S. Vercellone; Enrico Costa; S. Cutini; I. Donnarumma; M. Feroci; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; S. Mereghetti; Luigi Pacciani; Massimo Rapisarda; Paolo Soffitta; Massimo Trifoglio; A. Argan; F. Boffelli; A. Bulgarelli; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando

We report the detection by the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite of terrestrial gamma ray flashes (TGFs) obtained with the minicalorimeter (MCAL) detector operating in the ...


Nature | 2009

Extreme particle acceleration in the microquasar Cygnus X-3

Marco Tavani; A. Bulgarelli; Giancarlo Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; Enrico Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D’Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


Nature | 2009

Discovery of extreme particle acceleration in the microquasar Cygnus X-3

A. Bulgarelli; G. Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; E. Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; M. Feroci

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


Astronomy and Astrophysics | 2009

First AGILE catalog of high-confidence gamma-ray sources

Francesco Verrecchia; Andrew W. Chen; A. Bulgarelli; A. Pellizzoni; A. Giuliani; S. Vercellone; F. Longo; P. Giommi; G. Barbiellini; Massimo Trifoglio; F. Gianotti; A. Argan; A. Antonelli; F. Boffelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; S. Colafrancesco; T. Contessi; Enrico Costa; S. Cutini; Filippo D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; G. Fanari; M. Feroci; A. Ferrari

We present the first catalog of high-confidence γ-ray sources detected by the AGILE satellite during observations performed from July 9, 2007 to June 30, 2008. Cataloged sources were detected by merging all the available data over the entire time period. AGILE, launched in April 2007, is an ASI mission devoted to γ-ray observations in the 30 MeV–50 GeV energy range, with simultaneous X-ray imaging capability in the 18–60 keV band. This catalog is based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100 MeV. For the first AGILE catalog, we adopted a conservative analysis, with a high-quality event filter optimized to select γ-ray events within the central zone of the instrument field of view (radius of 40 ◦ ). This is a significance-limited (4σ) catalog, and it is not a complete flux-limited sample due to the non-uniform first-year AGILE sky coverage. The catalog includes 47 sources, 21 of which are associated with confirmed or candidate pulsars, 13 with blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2 with SNRs, 1 with a colliding-wind binary system, and 8 with unidentified sources.


The Astrophysical Journal | 2009

THE EVOLUTION OF THE γ- AND X-RAY LUMINOSITIES OF PULSAR WIND NEBULAE

F. Mattana; M. Falanga; Diego Gotz; R. Terrier; P. Esposito; A. Pellizzoni; A. De Luca; V. Marandon; Andrea Goldwurm; P. A. Caraveo

Pulsar wind nebulae are a prominent class of very high energy (E > 0.1 TeV) Galactic sources. Their -ray spectra are interpreted as due to inverse Compton scattering of ultrarelativistic electrons on the ambient photons, whereas the X-ray spectra are due to synchrotron emission. We investigate the relation between the - and-X-ray emission and the pulsars’ spin-down luminosity and characteristic age. We find that the distance-independent - to X-ray flux ratio of the nebulae is inversely proportional to the spin-down luminosity, (∝ u E −1.9 ), while it appears proportional to the characteristic age, (∝ � 2.2 c ), of the parent pulsar. We interpret these results as due to the evolution of the electron energy distribution and the nebular dynamics, supporting the idea of so-called relic pulsar wind nebulae. These empirical relations provide a new tool to classify unidentified diffuse -ray sources and to estimate the spin-down luminosity and characteristic age of rotation powered pulsars with no detected pulsation from the X- and −ray properties of the associated pulsar wind nebulae. We apply these relations to predict the spin-down luminosity and characteristic age of four (so far unpulsing) candidate pulsars associated to wind nebulae. Subject headings: pulsars : general — radiation mechanisms: non-thermal — supernova remnants — X-rays : stars — gamma rays: observations


Astronomy and Astrophysics | 2013

X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

D. de Martino; T. Belloni; M. Falanga; A. Papitto; S. Motta; A. Pellizzoni; G. Piano; N. Masetti; J.-M. Bonnet-Bidaud; M. Mouchet; K. Mukai; A. Possenti

XSSJ1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGLJ1227.9-4852/2FGLJ1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity low-mass X-ray binary (LMXB), but its nature is still unclear. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. The X-ray history of XSSJ1227.0-4859 over 7yr shows a persistent and rather stable low-luminosity (~6x10^33 d_{1\,kpc}^2 erg/s) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGLJ1227.7-4853 is also stable over an overlapping period of 4.7\,yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at ~13\,kK and a cool one at ~4.6\,kK. The latter would suggest a late-type K2-K5 companion star, a distance range of1.4--3.6kpc and an orbital period of 7--9 h. A near-UV variability (>6\,h) also suggests a longer orbital period than previously estimated. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case it would be the first associated with a high-energy gamma-ray source.


Monthly Notices of the Royal Astronomical Society | 2015

X-ray coherent pulsations during a sub-luminous accretion disc state of the transitional millisecond pulsar XSS J12270−4859

A. Papitto; D. de Martino; T. Belloni; M. Burgay; A. Pellizzoni; A. Possenti; D. F. Torres

We present the first detection of X-ray coherent pulsations from the transitional millisecond pulsar XSS J12270-4859, while it was in a sub-luminous accretion disk state characterized by a 0.5-10 keV luminosity of 5E33 erg/s (assuming a distance of 1.4 kpc). Pulsations were observed by XMM-Newton at an rms amplitude of (7.7 +/- 0.5)% with a second harmonic stronger than the the fundamental frequency, and were detected when the source is neither flaring nor dipping. The most likely interpretation of this detection is that matter from the accretion disk was channelled by the neutron star magnetosphere and accreted onto its polar caps. According to standard disk accretion theory, for pulsations to be observed the mass in-flow rate in the disk was likely larger than the amount of plasma actually reaching the neutron star surface; an outflow launched by the fast rotating magnetosphere then probably took place, in agreement with the observed broad-band spectral energy distribution. We also report about the non-detection of X-ray pulsations during a recent observation performed while the source behaved as a rotationally-powered radio pulsar.


The Astrophysical Journal | 2009

MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. I. THE AGILE 2007 NOVEMBER CAMPAIGN ON THE “CRAZY DIAMOND”

S. Vercellone; Andrew W. Chen; V. Vittorini; A. Giuliani; F. D'Ammando; I. Donnarumma; G. Pucella; C. M. Raiteri; M. Villata; W. P. Chen; G. Tosti; D. Impiombato; Patrizia Romano; A. Belfiore; A. De Luca; G. Novara; F. Senziani; A. Bazzano; M. Fiocchi; P. Ubertini; A. Ferrari; A. Argan; G. Barbiellini; F. Boffelli; A. Bulgarelli; P. A. Caraveo; P. W. Cattaneo; V. Cocco; Enrico Costa; E. Del Monte

We report on a multiwavelength observation of the blazar 3C 454.3 (which we dubbedcrazydiamond) carried out on November 2007 by means of the astrophysical satellitesAGILE,InternationalGamma-RayAstrophysicsLaboratory (INTEGRAL), Swift, the Whole Earth Blazar Telescope (WEBT) Consortium, and the optical–NIR telescope Rapid Eye Mount (REM). Thanks to the wide field of view of theAGILE satellite and its prompt alert dissemination to other observatories, we obtained a long (three weeks), almost continuous γ -ray coverage of the blazar 3C 454.3 across 14 decades of energy. This broadband monitoring allows us to study in great detail light curves, correlations, time lags, and spectral energy distributions (SEDs) during different physical states. Gamma-ray data were collected during an AGILE pointing toward the Cygnus Region. Target of Opportunity (ToO) observations were performed to follow up the γ -ray observations in the soft and hard X-ray energy bands. Optical data were acquired continuously by means of a preplanned WEBT campaign and through an REM ToO repointing. 3C 454.3 is detected at a ∼19σ level during the three-week observing period, with an average flux above 100 MeV of FE>100 MeV = (170 ± 13) × 10 −8 photons cm −2 s −1 .T heγ -ray spectrum can be fitted with a single power law with photon index ΓGRID = 1.73 ± 0.16 between 100 MeV and 1 GeV. We detect significant day-by-day variability of the γ -ray emission during our observations, and we can exclude that the fluxes are constant at the 99.6% (∼ 2.9σ ) level. The source was detected typically around 40 deg off-axis, and it was substantially off–axis in the field of view of the AGILE hard X-ray imager. However, a five-day long ToO observation by INTEGRAL detected 3C 454.3 at an average flux of about F20–200 keV = 1.49 × 10 −3 photons cm −2 s −1 with an average photon index of ΓIBIS = 1.75 ± 0.24 between 20– 200 keV. Swift also detected 3C 454.3 with a flux in the 0.3–10 keV energy band in the range (1.23–1.40) × 10 −2 photons cm −2 s −1 and a photon index in the range ΓXRT = 1.56–1.73. In the optical band, both WEBT and REM show an extremely variable behavior in the R band. A correlation analysis based on the entire data set is consistent with no time lags between the γ -ray and the optical flux variations. Our simultaneous multifrequency observations strongly indicate that the dominant emission mechanism between 30 MeV and 30 GeV is dominated by inverse Compton scattering of relativistic electrons in the jet on the external photons from the broad line region.


Astronomy and Astrophysics | 2010

AGILE detection of GeV gamma-ray emission from the SNR W28

A. Giuliani; A. Bulgarelli; E. Striani; S. Sabatini; M. Cardillo; Yasuo Fukui; Akiko Kawamura; Akio Ohama; Naoko Furukawa; K. Torii; Hidetoshi Sano; F. Aharonian; F. Verrecchia; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Enrico Costa; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; I. Donnarumma; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; M. Galli

Aims. Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission by means of the interaction of accelerated particles with the concentrated gas. The middle-aged SNR W28, because of its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. Methods. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12 CO (J = 1 → 0) molecular line emission). Results. The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 ± 5) × 10 −8 ph cm −2 s −1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations in the GeV to TeV flux ratio imply that there is a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronicinduced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by both AGILE in the MeV-GeV energy range and the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.

Collaboration


Dive into the A. Pellizzoni's collaboration.

Researchain Logo
Decentralizing Knowledge