A. Pérez-Sierra
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Pérez-Sierra.
Persoonia | 2012
David Gramaje; Carlos Agustí-Brisach; A. Pérez-Sierra; E. Moralejo; Diego Olmo; Lizel Mostert; U. Damm; J. Armengol
Severe decline of almond trees has recently been observed in several orchards on the island of Mallorca (Balearic Islands, western Mediterranean Sea). However, the identity of the causal agents has not yet been investigated. Between August 2008 and June 2010, wood samples from branches of almond trees showing internal necroses and brown to black vascular streaking were collected in the Llevant region on the island of Mallorca. Several fungal species were subsequently isolated from the margin between healthy and symptomatic tissue. Five species of Botryosphaeriaceae (namely Botryosphaeria dothidea, Diplodia olivarum, D. seriata, Neofusicoccum australe and N. parvum), Eutypa lata, Phaeoacremonium iranianum and Phomopsis amygdali were identified based on morphology, culture characteristics and DNA sequence comparisons. Neofusicoccum parvum was the dominant species, followed by E. lata, D. olivarum and N. australe. First reports from almond include D. olivarum and Pm. iranianum. Two species are newly described, namely Collophora hispanica sp. nov. and Phaeoacremonium amygdalinum sp. nov.
Phytopathology | 2013
M. Berbegal; A. Pérez-Sierra; J. Armengol; Niklaus J. Grünwald
Fusarium circinatum is thought to have been moved around the world with pine planting stock consisting, most probably, of infected seed. In this effort, we investigate the genetic structure of F. circinatum in Spain and globally. In total, 223 isolates were studied from five regions in northern Spain and eight countries. Eight microsatellite markers revealed 66 multilocus genotypes (MLGs). Minimum spanning network analysis of MLGs by region within Spain as well as globally, discriminant analysis of principal components, and analysis of molecular variance revealed that Spanish populations are significantly differentiated and structured into two distinct groups, each one including one of the dominant genotypes observed. This result suggests that two independent introductions occurred into Spain that subsequently underwent clonal divergence and admixture. This result is further supported by the linkage disequilibrium and clonality observed for F. circinatum populations in northern Spain. The maintenance of differentiation between the clusters could result from the lack of or rare sexual reproduction in Spain. Possible introduction pathways from other countries and subsequent routes of dispersion of F. circinatum in Spain are discussed.
PLOS ONE | 2015
Santiago Català; A. Pérez-Sierra; P. Abad-Campos
Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.
Mycologia | 2014
Z. Gloria Abad; Jorge A. Abad; S. O. Cacciola; A. Pane; Roberto Faedda; Eduardo Moralejo; A. Pérez-Sierra; P. Abad-Campos; Luis A. Álvarez-Bernaola; J. Bakonyi; András Józsa; Maria Luz Herrero; T. Burgess; J. H. Cunnington; I. W. Smith; Yilmaz Balci; C. L. Blomquist; Béatrice Henricot; G. Denton; Chris Spies; Adéle McLeod; Lassaad Belbahri; D. E. L. Cooke; Koji Kageyama; Seiji Uematsu; İlker Kurbetli; Kemal Değirmenci
A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and β-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.
Plant Disease | 2007
David Gramaje; Sandra Alaniz; A. Pérez-Sierra; P. Abad-Campos; J. García-Jiménez; J. Armengol
In September 2009, symptoms of grapevine (Vitis vinifera L.) decline were observed on 3-year-old grapevines in a vineyard in Roquetas de Mar (Almeria Province, southern Spain). Affected vines were weak with reduced foliage and chlorotic leaves. Black spots and dark streaking of the xylem vessels could be seen in cross- or longitudinal sections of the rootstock trunk. Symptomatic plants were collected and sections (10 cm long) were cut from the basal end of the rootstocks, washed under running tap water, surface disinfested for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. The sections were split longitudinally and small pieces of discolored tissues were plated onto malt extract agar (MEA) supplemented with 0.5 g liter-1 of streptomycin sulfate. Dishes were incubated at 25 to 26°C in the dark for 14 to 21 days, and all colonies were transferred to potato dextrose agar (PDA). A Phaeoacremonium sp. was consistently isolated from necrotic tissues. Single conidial isolates were obtained and grown on PDA and MEA in the dark at 25°C for 2 to 3 weeks until colonies produced spores (2). Colonies were grayish brown on PDA and dark brown on MEA. Conidiophores were short and unbranched and 11.5 to 46 (25.5) μm long. Phialides were often polyphialidic. Conidia were hyaline, oblong-ellipsoidal or allantoid, 2.5 to 5 (4.2) μm long, and 1 to 1.7 (1.2) μm wide. On the basis of these characters, the isolates were identified as Phaeoacremonium krajdenii L. Mostert, Summerb. & Crous (1,2). DNA sequencing of a fragment of the beta-tubulin gene of the isolate (Pkr-1) using primers T1 and Bt2b (GenBank Accession No. HM637892) matched P. krajdenii GenBank Accession No. AY579330. Pathogenicity tests were conducted using isolate Pkr-1. Ten 1-year-old callused and rooted cuttings of 110 R rootstock grown in pots with sterile peat were wounded at the uppermost internode with an 8-mm cork borer. A 5-mm mycelium PDA plug from a 2-week-old culture was placed in the wound before being wrapped with Parafilm. Ten control plants were inoculated with 5-mm noncolonized PDA plugs. Plants were maintained in a greenhouse at 25 to 30°C. Within 3 months, shoots on all Phaeoacremonium-inoculated cuttings had weak growth with small leaves and short internodes and there were black streaks in the xylem vessels. The vascular necroses that developed on the inoculated plants were 5.5 ± 1.2 cm long, significantly greater than those on the control plants (P < 0.01). Control plants did not show any symptoms. The fungus was reisolated from discolored tissue of all inoculated cuttings, completing Kochs postulates. P. krajdenii has a worldwide distribution, although these reports are from human infections (1). P. krajdenii was first reported as a pathogen of grapevines in South Africa (1). To our knowledge, this is the first report of P. krajdenii causing young grapevine decline in Spain or any country in Europe. References: (1) L. Mostert et al. J. Clin. Microbiol. 43:1752, 2005. (2) L. Mostert et al. Stud. Mycol. 54:1, 2006.
Gramaje, D., León, M., Pérez-Sierra, A., Burgess, T. <http://researchrepository.murdoch.edu.au/view/author/Burgess, Treena.html> and Armengol, J. (2014) New Phaeoacremonium species isolated from sandalwood trees in western Australia. IMA Fungus, 5 (1). pp. 67-77. | 2014
David Gramaje; M. León; A. Pérez-Sierra; T. Burgess; J. Armengol
Thirty-eight Phaeoacremonium isolates collected from pruning wounds of tropical sandalwood in Western Australia were studied with morphological and cultural characteristics as well as phylogenetic analyses of combined DNA sequences of the actin and β-tubulin genes. Three known Phaeoacremonium species were found, namely P. alvesii, P. parasiticum, and P. venezuelense. Phaeoacremonium venezuelense represents a new record for Australia. Two new species are described: P. luteum sp. nov. can be identified by the ability to produce yellow pigment on MEA, PDA, and OA, the predominance of subcylindrical to subulate type II phialides, and the mycelium showing prominent exudate droplets observed as warts; and P. santali sp. nov. which can be separated from other species producing pink colonies on MEA by the predominance of type I and II phialides, the distinct brownish olive colonies in OA, and slow growth.
Plant Disease | 2014
M. Berbegal; I. López-Cortés; D. Salazar; David Gramaje; A. Pérez-Sierra; J. García-Jiménez; J. Armengol
Since 2010, a new foliar and fruit disease was observed in pomegranate (Punica granatum L.) orchards in Alicante Province (eastern Spain). Symptoms included black spots on leaves and fruits, as well as chlorosis and premature abscission of leaves. Fungal isolates were obtained by surface-disinfecting small fragments of symptomatic leaf and fruit tissues in 0.5% NaOCl, double-rinsing in sterile water, and plating them onto potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. Gray-to-black colonies were obtained, which were identified as Alternaria sp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (4). Conidia (n = 100) measured (12.2-) 20.2 (-27.6) × (5.7-) 9.2 (-12.0) μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures were obtained and their genomic DNA was extracted. The internal transcribed spacer (ITS) region of rDNA and partial sequences of the beta tubulin gene were amplified and sequenced with primers ITS1-ITS4 and Bt1a-Bt1b, respectively (3). BLAST analysis of the sequences showed that they were 100% identical to a pathogenic A. alternata (Fr.) Keissl. isolate obtained from black spot disease of pomegranate in Israel (Accession No. JN247826.1, ITS and Accession No. JN247836.1, beta tubulin) (2). As all the sequences obtained showed 100% homology, ITS and beta tubulin sequences of a representative isolate (1516B) were submitted to GenBank (KF199871 and KF199872, respectively). In addition, a PCR reaction with specific primers (C_for/C_rev) designed to recognize highly virulent isolates of A. alternata causing black spot of pomegranate was used with all isolates (2). A characteristic fragment of ~950 bp was amplified in two isolates: 1552B and 1707B. Pathogenicity was assessed on plants and detached fruit of pomegranate cv. Mollar (1). Two-year-old pomegranate trees were inoculated with isolates 1552B and 1707B by spraying a conidial suspension (106 conidia/ml) onto the upper and lower leaf surfaces. Five plants per fungal isolate were used and five control plants were sprayed with sterile water. Plants were covered with transparent plastic bags and incubated in a growth chamber for 1 month at 25°C, with a 12-h photoperiod. One-month-old fruits were surface sterilized in 1.5% sodium hypochlorite solution for 1 min and rinsed twice in water. Two filter paper squares (5 × 5 mm) were dipped in the conidial suspensions and placed on the fruit surface. Inoculated fruit were incubated in a humid chamber in the dark at 25°C. Ten fruit per fungal isolate were used and 10 control fruit were inoculated with sterile water. Black spots were visible on inoculated leaves and fruit, 10 and 3 days after inoculation, respectively. Symptoms were not observed on controls. The fungus was re-isolated from leaf and fruit lesions, confirming Kochs postulates. Leaf black spot of pomegranate caused by A. alternata was first described in India in 1988, and later in Israel in 2010 affecting both fruit and leaves (1). To our knowledge, this is the first report of the disease in Spain, where it could represent a threat for pomegranate cultivation due to the increasing amount of area dedicated to this crop. References: (1) D. Ezra et al. Australas. Plant Dis. Notes 5:1, 2010. (2) T. Gat et al. Plant Dis. 96:1513, 2012. (3) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (4) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.
Fungal Biology | 2011
J. Armengol; Sandra Alaniz; A. Vicent; R. Beltrán; P. Abad-Campos; A. Pérez-Sierra; J. García-Jiménez; Ibtissem Ben Salem; Mounira Souli; Naima Boughalleb
The effect of double stranded RNA (dsRNA) infection on growth rate and the reproductive potential of Monosporascus cannonballus was studied in 21 isolates collected in cucurbit growing areas of Spain and Tunisia. The isolates were incubated on potato dextrose agar (PDA) under different conditions of temperature, pH, and water potential (Ψ(s)). They showed optimal growth temperatures over the range of 27-34°C and perithecia formation was obtained mainly at 25 and 30°C, although some isolates were able to produce perithecia at 35°C. All isolates were able to produce perithecia in a broad range of pHs (4-8). Regarding the effect of Ψ(s,) the isolates were more tolerant to grow on KCl than on NaCl. For each solute, radial growth decreased progressively as Ψ(s) decreased and was severely limited at -5.0 to -6.0MPa. Perithecia formation was highest at -0.5MPa, decreased at -1.0MPa and occurred just in some isolates at -2.0MPa. Nine of the M. cannonballus isolates harboured dsRNA with 2-6 bands each and a size range of 1.9-18.0Kb. Phenotypical data were subjected to multivariate factorial analysis. Most of the isolates clustered in two groups corresponding with the presence/absence of dsRNA elements. Isolates without detectable dsRNA produced more perithecia. However, isolates with dsRNA produced lower number of perithecia depending on the pH, Ψ(s,) or solute used. These results improve our understanding of the behaviour and growth of this pathogen in soil, and can be useful to implement effective disease control.
Plant Disease | 2008
J. Armengol; David Gramaje; A. Pérez-Sierra; E. Landeras; R. Alzugaray; Jordi Luque; Soledad Martos
In 2005 and 2006, dieback and branch cankers were observed in 12-year-old Eucalyptus globulus Labill. plantations in Gijón (northern Spain) and a 20-year-old pistachio (Pistacia vera L.) plantation in Constantí (northeastern Spain). Isolations were made from symptomatic branches. Small pieces of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl and plated onto malt extract agar amended with 0.5 g L-1 streptomycin sulfate. Plates were incubated at 25°C in the dark and all growing colonies were transferred to potato dextrose agar (PDA). A Neofusicoccum sp. was consistently isolated from necrotic tissues of both host species. On PDA at 25°C, isolates developed a moderately dense mycelium, initially with a pale yellow pigment diffusing into the medium but becoming olivaceous gray after 5 to 6 days. Pycnidia were produced on sterile eucalyptus and pistachio twigs placed on the surface of water agar after 1 month. Conidia were hyaline, fusiform, aseptate, with granular contents. Conidia from eucalyptus isolates measured (22.5-) 25.4 (-28.1) × (5-) 6.2 (-7.5) μm, (n = 40) and (20.0-) 23.6 (-28.0) × (6.5-) 7.1 (-8.0) μm, (n = 40) from pistachio isolates. Isolates were identified as Neofusicoccum australe (Slippers, Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips (1,2). DNA sequences of the rDNA internal transcribed spacer region (ITS), part of the beta-tubulin (BT2), and part of the translation elongation factor 1-alpha (EF1-α) genes from isolates CBS 122027 (pistachio) and CBS 122026 and CBS 122025 (eucalyptus) were used to confirm the identifications through BLAST searches in GenBank. Representative sequences of all studied regions were deposited in GenBank (ITS: EU375516 and EU375517; BT2: EU375520; EF1-α: EU375518 and EU375519). Pathogenicity tests were conducted on 8-month-old eucalyptus seedlings and 2-year-old pistachio plants with the three N. australe strains mentioned above. A mycelial plug taken from the margin of an actively growing colony of each isolate was put in a shallow wound (0.4 cm2) made with a scalpel on the stem of each plant. Inoculation wounds were wrapped with Parafilm. Controls were inoculated with sterile PDA plugs. Ten replicates for each isolate and plant species were used, with an equal number of control plants. Plants were maintained in a greenhouse at 25°C. After 3 weeks, all eucalyptus seedlings showed leaf wilting, stem canker, and pycnidia formation around the inoculation site. No foliar symptoms were observed in pistachio plants after 3 months, but depressed cankers variable in size and pycnidia formation developed around the inoculation site. Vascular necroses that developed on the inoculated plants were 10.2 ± 1.2 cm long in eucalyptus and 6.4 ± 1.6 cm long in pistachio, significantly greater than their respective controls (P < 0.01). There were no significant differences in necrosis lengths among the three N. australe isolate inoculations, irrespective of the inoculated host. These results point to a high susceptibility of eucalyptus to N. australe. No symptoms were visible in the control seedlings and no fungus was isolated from them. The pathogen was reisolated from all inoculated plants. To our knowledge, this is the first report of N. australe causing canker disease on eucalyptus and pistachio trees in Spain. References: (1) P. Crous et al. Stud. Mycol. 55:235, 2006. (2) B. Slippers et al. Mycologia 96:1030, 2004.
Persoonia | 2017
T. Jung; M. H. Jung; Bruno Scanu; D. Seress; G.M. Kovács; C. Maia; A. Pérez-Sierra; T. T. Chang; A. Chandelier; Kurt Heungens; K. Van Poucke; P. Abad-Campos; M. León; S. O. Cacciola; J. Bakonyi
During a survey of Phytophthora diversity in natural ecosystems in Taiwan six new species were detected. Multigene phylogeny based on the nuclear ITS, ß-tubulin and HSP90 and the mitochondrial cox1 and NADH1 gene sequences demonstrated that they belong to ITS Clade 7a with P. europaea, P. uniformis, P. rubi and P. cambivora being their closest relatives. All six new species differed from each other and from related species by a unique combination of morphological characters, the breeding system, cardinal temperatures and growth rates. Four homothallic species, P. attenuata, P. flexuosa, P. formosa and P. intricata, were isolated from rhizosphere soil of healthy forests of Fagus hayatae, Quercus glandulifera, Q. tarokoensis, Castanopsis carlesii, Chamaecyparis formosensis and Araucaria cunninghamii. Two heterothallic species, P. xheterohybrida and P. xincrassata, were exclusively detected in three forest streams. All P. xincrassata isolates belonged to the A2 mating type while isolates of P. xheterohybrida represented both mating types with oospore abortion rates according to Mendelian ratios (4–33 %). Multiple heterozygous positions in their ITS, ß-tubulin and HSP90 gene sequences indicate that P. xheterohybrida, P. xincrassata and P. cambivora are interspecific hybrids. Consequently, P. cambivora is re-described as P. xcambivora without nomenclatural act. Pathogenicity trials on seedlings of Castanea sativa, Fagus sylvatica and Q. suber indicate that all six new species might pose a potential threat to European forests.