Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Pukhov is active.

Publication


Featured researches published by A. Pukhov.


Nature | 2004

A laser-plasma accelerator producing monoenergetic electron beams

Jérôme Faure; Y. Glinec; A. Pukhov; S. Kiselev; S. Gordienko; E. Lefebvre; Jean-Philippe Rousseau; F. Burgy; Victor Malka

Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m-1, owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser–plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m-1). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.


Physics of Plasmas | 1999

Particle acceleration in relativistic laser channels

A. Pukhov; Zheng-Ming Sheng; J. Meyer-ter-Vehn

Energy spectra of ions and fast electrons accelerated by a channeling laser pulse in near-critical plasma are studied using three-dimensional (3D) Particle-In-Cell simulations. The realistic 3D geometry of the simulations allows us to obtain not only the shape of the spectra, but also the absolute numbers of accelerated particles. It is shown that ions are accelerated by a collisionless radial expansion of the channel and have nonthermal energy spectra. The electron energy spectra instead are Boltzmann-like. The effective temperature Teff scales as I1/2. The form of electron spectra and Teff depends also on the length of the plasma channel. The major mechanism of electron acceleration in relativistic channels is identified. Electrons make transverse betatron oscillations in the self-generated static electric and magnetic fields. When the betatron frequency coincides with the laser frequency as witnessed by the relativistic electron, a resonance occurs, leading to an effective energy exchange between the l...


Physics of Plasmas | 1996

Short‐pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity

R. Lichters; J. Meyer-ter-Vehn; A. Pukhov

The generation of harmonics by interaction of an ultrashort laser pulse with a step boundary of a plane overdense plasma layer is studied at intensities Iλ2=1017–1019 W cm−2 μm2 for normal and oblique incidence and different polarizations. Fully relativistic one‐dimensional particle‐in‐cell (PIC) simulations are performed with high spectral resolution. Harmonic emission increases with intensity and also when lowering the plasma density. The simulations reveal strong oscillations of the critical surface driven by the normal component of the laser field and by the ponderomotive force. It is shown that the generation of harmonics can be understood as reflection from the oscillating surface, taking full account of retardation. Describing the oscillations by one or more Fourier components with adjustable amplitudes, model spectra are obtained that well reproduce the PIC spectra. The model is based on relativistic cold plasma equations for oblique incidence. General selection rules concerning polarization of od...


Reports on Progress in Physics | 2003

Strong field interaction of laser radiation

A. Pukhov

The Review covers recent progress in laser-matter interaction at intensities above 1018 W cm−2. At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 109 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI will work. The laser pulse cannot reach the dense core of the target directly. The laser energy must be converted into fast particles first and then transported through the overdense plasma region. The energy spectra of the laser-generated particle beams, their emittance and transport problems are discussed here. The laser–particle interaction at relativistic intensities is highly non-linear and higher laser harmonics are generated. In plasma, the high-harmonic generation is a collective effect—it appears to be quite effective when an intense laser pulse is reflected from the overdense plasma layer. The plasma boundary is then driven by the laser ponderomotive force and works as a relativistically oscillating mirror. Another interesting application is the amplification of short-pulse laser in plasma by a counter-propagating pump pulse. 3D PIC simulations suggest that multi-terawatt pulses of sub-10 fs duration can be generated this way.


Physics of Plasmas | 2004

Phenomenological theory of laser-plasma interaction in “bubble” regime

Igor Kostyukov; A. Pukhov; S. Kiselev

The electron trapping in the “bubble” regime of laser-plasma interaction as proposed by Pukhov and Meyer-ter-Vehn [A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)] is studied. In this regime the laser pulse generates a solitary plasma electron cavity: the bubble. It is free from the cold plasma electrons and runs with nearly light velocity. The present work discusses the form of the bubble and the spatial distribution of electromagnetic fields within the cavity. We extend the one-dimensional electron capture theory to the three-dimensional case. It is shown that the bubble can trap plasma electrons. The trapping condition is derived and the trapping cross section is estimated. Electron motion in the self-generated electron bunch is investigated. Estimates for the maximum of electron bunch energy and the bunch density are provided.


Physics of Plasmas | 2000

Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma

M. Honda; J. Meyer-ter-Vehn; A. Pukhov

Nonlinear channel dynamics and magnetized transport of relativistic electron currents in plasma have been investigated, using transverse two-dimensional particle-in-cell simulations allowing for movable ions and fully relativistic binary collisions. Current filaments self-organize in coaxial structures where the relativistic beam in the center is surrounded by magnetized vacuum and a thin return current sheath outside. The current sheath explodes radially. The filament as a whole is current-neutral with almost vanishing magnetic field at the outside. Ion dynamics play an important role, leading to enhanced self-pinching of the filament cores. Collisional effects become significant in the slowly moving return currents. It is shown that electron currents of 100–1000 MA can be transported through dense plasma, but only through a large number of current filaments, each carrying about one Alfven current. This aspect is essential for relativistic electron transport in fast ignition of targets for inertial confi...


Physical Review Letters | 2004

Relativistic Doppler Effect: Universal Spectra and Zeptosecond Pulses

S. Gordienko; A. Pukhov; O. Shorokhov; T. Baeva

We report on a numerical observation of the train of zeptosecond pulses produced by the reflection of a relativistically intense femtosecond laser pulse from the oscillating boundary of an overdense plasma because of the Doppler effect. These pulses promise to become unique experimental and technological tools since their length is of the order of the Bohr radius and the intensity is extremely high proportional, variant 10(19) W/cm(2). We present the physical mechanism, analytical theory, and direct particle-in-cell simulations. We show that the harmonic spectrum is universal: the intensity of nth harmonic scales as 1/n(p) for n<4gamma(2), where gamma is the largest gamma factor of the electron fluid boundary, and p=3 and p=5/2 for the broadband and quasimonochromatic laser pulses, respectively.


Physical Review Letters | 2009

Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse.

Min Chen; A. Pukhov; T. P. Yu; Zheng-Ming Sheng

Using multidimensional particle-in-cell simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 10;{22} W/cm;{2} intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, three different regions (acceleration, transparency, and deformation region) are observed. In the acceleration region, the foil can be uniformly accelerated for a longer time compared to a usual flat target. Undesirable plasma heating is effectively suppressed. The final energy spectrum of the accelerated ion beam in the acceleration region is improved dramatically. Collimated GeV quasi-monoenergetic ion beams carrying as much as 19% of the laser energy are observed in multidimensional simulations.


Nature Physics | 2009

Proton-driven plasma-wakefield acceleration

A. Caldwell; K. V. Lotov; A. Pukhov; F. Simon

The extreme fields generated when a high-intensity laser or relativistic electron passes through a plasma offer the potential to accelerate particles over shorter distances than is possible with conventional accelerators. A new study suggests that driving a plasma with protons rather than electrons could be the key to generating TeV electron beams by this process.


Physical Review Letters | 2010

Self-Modulation Instability of a Long Proton Bunch in Plasmas

Naveen Kumar; A. Pukhov; K. V. Lotov

An analytical model for the self-modulation instability of a long relativistic proton bunch propagating in uniform plasmas is developed. The self-modulated proton bunch resonantly excites a large amplitude plasma wave (wakefield), which can be used for acceleration of plasma electrons. Analytical expressions for the linear growth rates and the number of exponentiations are given. We use full three-dimensional particle-in-cell (PIC) simulations to study the beam self-modulation and transition to the nonlinear stage. It is shown that the self-modulation of the proton bunch competes with the hosing instability which tends to destroy the plasma wave. A method is proposed and studied through PIC simulations to circumvent this problem, which relies on the seeding of the self-modulation instability in the bunch.

Collaboration


Dive into the A. Pukhov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. J. Rocca

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Gennady Shvets

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Reed Hollinger

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

S. Kiselev

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Shoujun Wang

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Min Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

C. Bargsten

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong-Pu Yu

National University of Defense Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge