A. R. Miles
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. R. Miles.
Physics of Plasmas | 2003
S. G. Glendinning; J. Bolstad; David G. Braun; M. J. Edwards; W. W. Hsing; Barbara F. Lasinski; H. Louis; A. R. Miles; J. C. Moreno; T. A. Peyser; B. A. Remington; H. F. Robey; E. J. Turano; C. P. Verdon; Ye Zhou
Experiments conducted on the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] and simulations show reduced Richtmyer–Meshkov growth rates in a strongly shocked system with initial amplitudes kη0⩽0.9. The growth rate at early time is less than half the impulsive model prediction, rising at later time to near the impulsive prediction. An analytical model that accounts for shock proximity agrees with the results.
The Astrophysical Journal | 2009
C. C. Kuranz; R. P. Drake; E. C. Harding; M.J. Grosskopf; H. F. Robey; B. A. Remington; M. J. Edwards; A. R. Miles; T. S. Perry; B.E. Blue; T. Plewa; Nathan Charles Hearn; J. P. Knauer; David Arnett; David R. Leibrandt
This paper shows results from experiments diagnosing the development of the Rayleigh-Taylor instability with two-dimensional initial conditions at an embedded, decelerating interface. Experiments are performed at the Omega Laser and use ~5 kJ of energy to create a planar blast wave in a dense, plastic layer that is followed by a lower density foam layer. The single-mode interface has a wavelength of 50 μm and amplitude of 2.5 μm. Some targets are supplemented with additional modes. The interface is shocked then decelerated by the foam layer. This initially produces the Richtmyer-Meshkov instability followed and then dominated by Rayleigh-Taylor growth that quickly evolves into the nonlinear regime. The experimental conditions are scaled to be hydrodynamically similar to SN1987A in order to study the instabilities that are believed to occur at the He/H interface during the blast-wave-driven explosion phase of the star. Simulations of the experiment were performed using the FLASH hydrodynamics code.
Physics of Plasmas | 2005
A. R. Miles; B. E. Blue; M. J. Edwards; J. Greenough; J. F. Hansen; H. F. Robey; R. P. Drake; C. C. Kuranz; D. R. Leibrandt
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh–Taylor, Richtmyer–Meshkov, and decompression effects. In this paper, results from three-dimensional (3D) numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case of the bubble front, relative to the 2D result. The post...
Physics of Plasmas | 2009
C. C. Kuranz; R. P. Drake; M.J. Grosskopf; A. Budde; C. M. Krauland; D.C. Marion; A. Visco; J.R. Ditmar; H. F. Robey; B. A. Remington; A. R. Miles; A. B. R. Cooper; C. Sorce; T. Plewa; Nathan Charles Hearn; K. L. Killebrew; J. P. Knauer; David Arnett; T.L. Donajkowski
This paper describes experiments exploring the three-dimensional (3D) Rayleigh–Taylor instability at a blast-wave-driven interface. This experiment is well scaled to the He/H interface during the explosion phase of SN1987A. In the experiments, ∼5 kJ of energy from the Omega laser was used to create a planar blast wave in a plastic disk, which is accelerated into a lower-density foam. These circumstances induce the Richtmyer–Meshkov instability and, after the shock passes the interface, the system quickly becomes dominated by the Rayleigh–Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This perturbation is 3D with a basic structure of two orthogonal sine waves with a wavelength of 71 μm and an amplitude of 2.5 μm. Additional long-wavelength modes with a wavelength of either 212 or 424 μm are added onto the single-mode pattern. The addition of the long-wavelength modes was motivated by the results of previous experiments where material penetrated unex...
Physics of Plasmas | 2010
C. C. Kuranz; R. P. Drake; M.J. Grosskopf; Bruce Fryxell; A. Budde; J. F. Hansen; A. R. Miles; T. Plewa; Nathan Charles Hearn; J. P. Knauer
The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh–Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He–H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh–Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetra...
The Astrophysical Journal | 2009
A. R. Miles
Blast-wave-driven instabilities play a rich and varied role in supernovae (SNe) evolution from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of stellar systems. We consider the simpler idealized problem of an interface between two constant-density fluids perturbed from spherical and driven by a central blast wave. Where valid, the existence of unified solutions suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end, we apply buoyancy-drag and bubble merger models that include effects of divergence and compressibility. In general, these effects preclude the true self-similar evolution of classical Rayleigh-Taylor (RT), but can be incorporated into a quasi-self-similar growth model. Loss of memory of initial conditions (ICs) can occur in the model, but requires pre-explosion mode numbers higher than predicted for Type II SNe, suggesting that their late-time structure is influenced by details of the initial perturbations. Where low modes dominate, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, the structure observed now contains direct information about the explosion process. When large-amplitude modes exist in the ICs, the contribution from the Richtmyer-Meshkov (RM) instability is significant compared to RT. Such RM growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in Tycho. Laser-driven laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making connections to their astrophysical counterparts.
Physics of Plasmas | 2007
J. F. Hansen; H. F. Robey; R. I. Klein; A. R. Miles
The high Mach number flow that follows an astrophysical shock can strip mass from interstellar clouds located in the flow. Eventually, the mass-stripping may fully strip the cloud, dispersing the entire cloud mass into the flow, and incidentally ending the cloud’s star formation. Experiments have been carried out at the Omega laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)], attempting to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. Ten laser beams with 5kJ of energy drive a strong shock into a cylinder filled with low-density foam with an embedded 120μm Al sphere simulating an interstellar cloud. The density ratio between Al and foam is ∼9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t≈5ns), undergoing a classical Kelvin-Helmholtz roll-up (12ns) followed by a Widnall instability (30ns), an inherently 3D effect that breaks the 2D symmetry of the experiment. Material is continu...
Physics of Plasmas | 2004
A. R. Miles; M. J. Edwards; J. Greenough
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh–Taylor, Richtmyer–Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-si...
Physics of Plasmas | 2011
Channing Huntington; C. C. Kuranz; R. P. Drake; A. R. Miles; Shon Prisbrey; H.-S. Park; H. F. Robey; B. A. Remington
Using a hohlraum produced thermal x-ray drive at the National Ignition Facility (NIF) to create pressure by material ablation, a shock exceeding 200 Mbar can be driven through a planar, solid-density target and into a lower-density foam material. The shock driven through the foam is strongly radiative, and this radiation significantly alters the dynamics of the system, including those of the Rayleigh-Taylor (RT) fluid instability at the interface between the two materials. We discuss here the design of experiments that can produce such radiative conditions. One will be able to compare the observed growth rates with an extensive body of hydrodynamic experiments performed previously. In this paper, we describe a set of 1D simulations performed to understand the mechanisms of stabilization in a strongly radiative Rayleigh-Taylor unstable system. Simulation results are used to calculate modified analytic RT growth rates which have been proposed in the literature. Calculations predict reduced RT spike growth as a result of increases in density gradient scale length and mass ablation from the unstable interface. This work has direct applicability to the observable features in upcoming NIF experiments.
Physics of Plasmas | 2009
R. P. Drake; C. C. Kuranz; A. R. Miles; H. J. Muthsam; T. Plewa
It has become very clear that the evolution of structure during supernovae is centrally dependent on the pre-existing structure in the star. Modeling of the pre-existing structure has advanced significantly, leading to improved understanding and to a physically based assessment of the structure that will be present when a star explodes. It remains an open question whether low-mode asymmetries in the explosion process can produce the observed effects or whether the explosion mechanism somehow produces jets of material. In any event, the workhorse processes that produce structure in an exploding star are blast-wave driven instabilities. Laboratory experiments have explored these blast-wave-driven instabilities and specifically their dependence on initial conditions. Theoretical work has shown that the relative importance of Richtmyer–Meshkov and Rayleigh–Taylor instabilities varies with the initial conditions and does so in ways that can make sense of a range of astrophysical observations.