Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. R. Offringa is active.

Publication


Featured researches published by A. R. Offringa.


Monthly Notices of the Royal Astronomical Society | 2010

Post-correlation radio frequency interference classification methods

A. R. Offringa; de Antonius Bruyn; Michael Biehl; Saleem Zaroubi; G. Bernardi; V. N. Pandey

We describe and compare several post-correlation radio frequency interference (RFI) classification methods. As data sizes of observations grow with new and improved telescopes, the need for completely automated, robust methods for RFI mitigation is pressing. We investigated several classification methods and find that, for the data sets we used, the most accurate among them is the SumThreshold method. This is a new method formed from a combination of existing techniques, including a new way of thresholding. This iterative method estimates the astronomical signal by carrying out a surface fit in the time-frequency plane. With a theoretical accuracy of 95 per cent recognition and an approximately 0.1 per cent false probability rate in simple simulated cases, the method is in practice as good as the human eye in finding RFI. In addition, it is fast, robust, does not need a data model before it can be executed and works in almost all configurations with its default parameters. The method has been compared using simulated data with several other mitigation techniques, including one based upon the singular value decomposition of the time-frequency matrix, and has shown better results than the rest.


Astronomy and Astrophysics | 2012

M 87 at metre wavelengths: the LOFAR picture

F. de Gasperin; E. Orru; M. Murgia; Andrea Merloni; H. Falcke; R. Beck; R. J. Beswick; L. Bîrzan; A. Bonafede; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; J. H. Croston; T. A. Enßlin; C. Ferrari; George Heald; S. Heidenreich; N. Jackson; G. Macario; John McKean; George K. Miley; Raffaella Morganti; A. R. Offringa; R. Pizzo; David A. Rafferty; H. J. A. Röttgering; A. Shulevski; M. Steinmetz; C. Tasse

Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4×109 M, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intracluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radiospectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of 10 μG, which increases to 13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of 40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s−1.


Astronomy and Astrophysics | 2012

First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

R. J. van Weeren; H. J. A. Röttgering; David A. Rafferty; R. Pizzo; A. Bonafede; M. Brüggen; G. Brunetti; C. Ferrari; E. Orru; George Heald; John McKean; C. Tasse; F. de Gasperin; L. Bîrzan; J. E. van Zwieten; S. van der Tol; A. Shulevski; N. Jackson; A. R. Offringa; John Conway; H. T. Intema; T. E. Clarke; I. van Bemmel; G. K. Miley; G. J. White; M. Hoeft; R. Cassano; G. Macario; Raffaella Morganti; M. W. Wise

Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.


Monthly Notices of the Royal Astronomical Society | 2013

Probing reionization with LOFAR using 21-cm redshift space distortions

Hannes Jensen; Kanan K. Datta; Garrelt Mellema; E. Chapman; Filipe B. Abdalla; Ilian T. Iliev; Yi Mao; Mario G. Santos; Paul R. Shapiro; Saleem Zaroubi; G. Bernardi; M. A. Brentjens; de Antonius Bruyn; B. Ciardi; G. Harker; Vibor Jelić; S. Kazemi; Luitje Koopmans; P. Labropoulos; O. Martinez; A. R. Offringa; V. N. Pandey; Joop Schaye; Rajat M. Thomas; V. Veligatla; H. Vedantham; S. Yatawatta

One of the most promising ways to study the epoch of reionization (EoR) is through radio observations of the redshifted 21-cm line emission from neutral hydrogen. These observations are complicated ...


Monthly Notices of the Royal Astronomical Society | 2012

Imaging neutral hydrogen on large scales during the Epoch of Reionization with LOFAR

Saleem Zaroubi; de Antonius Bruyn; G. Harker; Rajat M. Thomas; P. Labropolous; Vibor Jelić; Luitje Koopmans; M. A. Brentjens; G. Bernardi; B. Ciardi; S. Daiboo; S. Kazemi; O. Martinez-Rubi; Garrelt Mellema; A. R. Offringa; V. N. Pandey; Joop Schaye; V. Veligatla; H. Vedantham; S. Yatawatta

The first generation of redshifted 21 cm detection experiments, carried out with arrays like Low Frequency Array (LOFAR), Murchison Widefield Array (MWA) and Giant Metrewave Telescope (GMRT), will have a very low signal-to-noise ratio (S/N) per resolution element (less than or similar to 0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales, on the one hand, and the foregrounds effect on large scales, on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical. Despite these hurdles, in this paper we argue that for many reionization scenarios low-resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the intergalactic medium, reflecting the clustering of the large-scale structure, which stays strong up to scales of approximate to 120 h(-1) comoving Mpc (approximate to 1 degrees). The coherence of the emission on those scales allows us to reach sufficient S/N (greater than or similar to 3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (approximate to 120 h(-1) comoving Mpc) also argues for designing future EoR experiments, e. g. with Square Kilometre Array, with a field of view of at least 4 degrees.


Astronomy and Astrophysics | 2013

The LOFAR radio environment

A. R. Offringa; A. G. de Bruyn; Saleem Zaroubi; G. van Diepen; O. Martinez-Ruby; P. Labropoulos; M. A. Brentjens; B. Ciardi; S. Daiboo; G. Harker; Vibor Jelić; S. Kazemi; L. V. E. Koopmans; Garrelt Mellema; V. N. Pandey; R. Pizzo; Joop Schaye; H. Vedantham; V. Veligatla; Stefan J. Wijnholds; S. Yatawatta; P. Zarka; A. Alexov; J. Anderson; A. Asgekar; M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum

Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFARs nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.


Monthly Notices of the Royal Astronomical Society | 2016

First limits on the 21 cm power spectrum during the Epoch of X-ray heating

A. Ewall-Wice; Joshua S. Dillon; Jacqueline N. Hewitt; Abraham Loeb; Andrei Mesinger; A. R. Neben; A. R. Offringa; Max Tegmark; N. Barry; Adam P. Beardsley; G. Bernardi; Judd D. Bowman; F. Briggs; R. J. Cappallo; P. Carroll; B. E. Corey; A. de Oliveira-Costa; D. Emrich; L. Feng; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; Natasha Hurley-Walker; M. Johnston-Hollitt; Daniel C. Jacobs; David L. Kaplan; J. Kasper; Han-Seek Kim; E. Kratzenberg

This work was supported by NSF Grants AST-0457585, AST-0821321, AST-1105835, AST-1410719, AST-1410484, AST- 1411622, and AST-1440343, by the MIT School of Science, by the Marble Astrophysics Fund, and by generous donations from Jonathan Rothberg and an anonymous donor. AEW acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. AM acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 638809 – AIDA). Support for the MWA comes from the U.S. National Science Foundation (grants AST-0457585, PHY-0835713, CAREER- 0847753, and AST-0908884), the Australian Research Council (LIEF grants LE0775621 and LE0882938), the U.S. Air Force Of- fice of Scientific Research (grant FA9550-0510247), and the Centre for All-sky Astrophysics (an Australian Research Council Centre of Excellence funded by grant CE110001020). Support is also provided by the Smithsonian Astrophysical Observatory, the Raman Research Institute, the Australian National University, and the Victoria University of Wellington (via grant MED-E1799 from the New Zealand Ministry of Economic Development and an IBM Shared University Research Grant). The Australian Federal government provides additional support via the Commonwealth Scientific and Industrial Research Organisation (CSIRO), National Collaborative Research Infrastructure Strategy, Education Investment Fund, and the Australia India Strategic Research Fund, and Astronomy Australia Limited, under contract to Curtin University.


Monthly Notices of the Royal Astronomical Society | 2013

LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

Robert P. C. Wiersma; B. Ciardi; Rajat M. Thomas; G. Harker; Saleem Zaroubi; G. Bernardi; M. A. Brentjens; A. G. de Bruyn; S. Daiboo; Vibor Jelić; S. Kazemi; L. V. E. Koopmans; P. Labropoulos; O. Martinez; Garrelt Mellema; A. R. Offringa; V. N. Pandey; Joop Schaye; V. Veligatla; H. Vedantham; S. Yatawatta

Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21 cm emission is initially correlated with haloes on large scales (≳30 Mpc), anticorrelated on intermediate (˜5 Mpc) and uncorrelated on small (≲3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anticorrelated on large scales. The normalization of the cross-power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a powerful tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21 cm signal the noise expected from the LOw Frequency ARray (LOFAR) telescope, we find that while the normalization of the cross-power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for an Lyα Emitter (LAE) survey both the normalization and the shape of the cross-power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21 cm signal at the planned redshifts. If the ionized fraction at z ˜ 7 is lower than the one estimated here, then using the cross-power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.


Monthly Notices of the Royal Astronomical Society | 2013

Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR

B. Ciardi; P. Labropoulos; Antonella Maselli; Rajat M. Thomas; Saleem Zaroubi; Luca Graziani; James S. Bolton; G. Bernardi; M. A. Brentjens; de Antonius Bruyn; S. Daiboo; G. Harker; Vibor Jelić; S. Kazemi; Luitje Koopmans; O. Martinez; Garrelt Mellema; A. R. Offringa; V. N. Pandey; Joop Schaye; V. Veligatla; H. Vedantham; S. Yatawatta

We discuss the feasibility of the detection of the 21 cm forest in the diffuse intergalactic medium (IGM) with the radio telescope LOFAR. The optical depth to the 21 cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV versus X-ray heating) we do not expect to distinguish them by means of observations of the 21 cm forest. Because the presence of a strong X-ray background would make the detection of the 21 cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the X-ray background and the thermal history of the Universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z greater than or similar to 12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high-density pockets of gas could also be detected at z similar to 7 along preferential lines of sight.


Astronomy and Astrophysics | 2010

Foregrounds for observations of the cosmological 21 cm line - II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole

G. Bernardi; A. G. de Bruyn; G. Harker; M. A. Brentjens; B. Ciardi; Vibor Jelić; L. V. E. Koopmans; P. Labropoulos; A. R. Offringa; V. N. Pandey; Joop Schaye; Rajat M. Thomas; S. Yatawatta; Saleem Zaroubi

Context. In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. Aims: The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. Methods: We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C 196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Results: Total intensity maps were carefully calibrated, reaching a high dynamic range, 150 000:1 in the case of the 3C 196 field. No evidence of diffuse Galactic emission was found in the angular power spectrum analysis on scales smaller than ~10 arcmin in either of the two fields. On these angular scales the signal is consistent with the classical confusion noise of ~3 mJy beam-1. On scales greater than 30 arcmin we found an excess of power attributed to the Galactic foreground with an rms of 3.4 K and 5.5 K for the 3C 196 and the NCP field respectively. The intermediate angular scales suffered from systematic errors which prevented any detection. Patchy polarized emission was found only in the 3C 196 field whereas the polarization in the NCP area was essentially due to radio frequency interference. The polarized signal in the 3C 196 field is close to the thermal noise for angular scales smaller than ~10 arcmin. On scales greater than 30 arcmin it has an rms value of 0.68 K. The polarized signal appears mainly at rotation measure values smaller than 4 rad m-2. Conclusions: In regard of the detection of the cosmological 21 cm line, we conclude that Galactic total intensity emission lacks small-scale power, which is below the confusion noise level at the angular resolution of 2 arcmin. Galactic polarization, given its relative weakness and its small rotation measure values, is less severe than expected as a contaminant of the cosmological 21 cm line.Context. In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. Aims. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. Methods. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C 196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Results. Total intensity maps were carefully calibrated, reaching a high dynamic range, 150 000: 1 in the case of the 3C 196 field. No evidence of diffuse Galactic emission was found in the angular power spectrum analysis on scales smaller than similar to 10 arcmin in either of the two fields. On these angular scales the signal is consistent with the classical confusion noise of similar to 3 mJy beam(-1). On scales greater than 30 arcmin we found an excess of power attributed to the Galactic foreground with an rms of 3.4 K and 5.5 K for the 3C 196 and the NCP field respectively. The intermediate angular scales suffered from systematic errors which prevented any detection. Patchy polarized emission was found only in the 3C 196 field whereas the polarization in the NCP area was essentially due to radio frequency interference. The polarized signal in the 3C 196 field is close to the thermal noise for angular scales smaller than similar to 10 arcmin. On scales greater than 30 arcmin it has an rms value of 0.68 K. The polarized signal appears mainly at rotation measure values smaller than 4 rad m(-2). Conclusions. In regard of the detection of the cosmological 21 cm line, we conclude that Galactic total intensity emission lacks small-scale power, which is below the confusion noise level at the angular resolution of 2 arcmin. Galactic polarization, given its relative weakness and its small rotation measure values, is less severe than expected as a contaminant of the cosmological 21 cm line.

Collaboration


Dive into the A. R. Offringa's collaboration.

Top Co-Authors

Avatar

Saleem Zaroubi

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Harker

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Labropoulos

Kapteyn Astronomical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge