Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. R. Taylor is active.

Publication


Featured researches published by A. R. Taylor.


The Astrophysical Journal | 2007

Rotation Measures of Extragalactic Sources Behind the Southern Galactic Plane: New Insights into the Large-scale Magnetic Field of the Inner Milky Way

Jc Brown; Marijke Haverkorn; B. M. Gaensler; A. R. Taylor; N. S. Bizunok; N. M. McClure-Griffiths; John M. Dickey; Anne J. Green

We present new Faraday rotation measures (RMs) for 148 extragalactic radio sources behind the southern Galactic plane (253° ≤ l ≤ 356°, |b| ≤ 1.5°), and use these data in combination with published data to probe the large-scale structure of the Milky Ways magnetic field. We show that the magnitudes of these RMs oscillate with longitude in a manner that correlates with the locations of the Galactic spiral arms. The observed pattern in RMs requires the presence of at least one large-scale magnetic reversal in the fourth Galactic quadrant, located between the Sagittarius-Carina and Scutum-Crux spiral arms. To quantitatively compare our measurements to other recent studies, we consider all available extragalactic and pulsar RMs in the region we have surveyed, and jointly fit these data to simple models in which the large-scale field follows the spiral arms. In the best-fitting model, the magnetic field in the fourth Galactic quadrant is directed clockwise in the Sagittarius-Carina spiral arm (as viewed from the north Galactic pole), but is oriented counterclockwise in the Scutum-Crux arm. This contrasts with recent analyses of pulsar RMs alone, in which the fourth-quadrant field was presumed to be directed counterclockwise in the Sagittarius-Carina arm. Also in contrast to recent pulsar RM studies, our joint modeling of pulsar and extragalactic RMs demonstrates that large numbers of large-scale magnetic field reversals are not required to account for observations.


Astrophysical Journal Supplement Series | 2000

The VSOP 5 GHz Continuum Survey: The Prelaunch VLBA Observations

Edward B. Fomalont; S. Frey; Z. Paragi; Leonid I. Gurvits; William K. Scott; A. R. Taylor; Philip G. Edwards; Hisashi Hirabayashi

We have imaged with milliarcsecond resolution at 5 GHz 374 strong flat-spectrum radio sources north of declination -44° using the VLBA in 1996 June. The source sample was compiled from the source list for the VLBI Space Observatory Programme (VSOP) Survey Program. About 250 of the sources observed with the VLBA had correlated flux densities ≥0.3 Jy on the longest VLBA baseline and these sources are currently being observed with VSOP at 5 GHz. This paper presents the results from the VLBA prelaunch observations: the correlated flux density dependence with u-v distance; the contour display of the images; the model fit parameters for each radio component; and improved positions for 62 sources. Comparisons and extensive cross-referencing with other major VLBI surveys are also given.


Astronomy and Astrophysics | 2012

An improved map of the galactic Faraday sky

Niels Oppermann; H. Junklewitz; G. Robbers; M. R. Bell; T. A. Enßlin; A. Bonafede; R. Braun; Jo-Anne Brown; T. E. Clarke; Ilana J. Feain; B. M. Gaensler; A. Hammond; L. Harvey-Smith; George Heald; M. Johnston-Hollitt; U. Klein; Philipp P. Kronberg; Shude Mao; N. M. McClure-Griffiths; S. P. O’Sullivan; Luke Pratley; Timothy Robishaw; Subhashis Roy; D. H. F. M. Schnitzeler; C. Sotomayor-Beltran; J. Stevens; J. M. Stil; C. Sunstrum; A. Tanna; A. R. Taylor

We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map-making procedure we used a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of π. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior C� ∝ � −2.17 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) ∝ k −2.17 of the underlying


The Astrophysical Journal | 2011

MODELING THE MAGNETIC FIELD IN THE GALACTIC DISK USING NEW ROTATION MEASURE OBSERVATIONS FROM THE VERY LARGE ARRAY

C. L. Van Eck; Jo-Anne Brown; J. M. Stil; K. Rae; Shude Mao; B. M. Gaensler; Anvar Shukurov; A. R. Taylor; M. Haverkorn; Philipp P. Kronberg; N. M. McClure-Griffiths

We have determined 194 Faraday rotation measures (RMs) of polarized extragalactic radio sources using new, multi-channel polarization observations at frequencies around 1.4 GHz from the Very Large Array in the Galactic plane at 17° ≤ l ≤ 63° and 205° ≤ l ≤ 253°. This catalog fills in gaps in the RM coverage of the Galactic plane between the Canadian Galactic Plane Survey and Southern Galactic Plane Survey. Using this catalog we have tested the validity of recently proposed axisymmetric and bisymmetric models of the large-scale (or regular) Galactic magnetic field, and found that of the existing models we tested, an axisymmetric spiral model with reversals occurring in rings (as opposed to along spiral arms) best matched our observations. Building on this, we have performed our own modeling, using RMs from both extragalactic sources and pulsars. By developing independent models for the magnetic field in the outer and inner Galaxy, we conclude that in the inner Galaxy, the magnetic field closely follows the spiral arms, while in the outer Galaxy, the field is consistent with being purely azimuthal. Furthermore, the models contain no reversals in the outer Galaxy, and together seem to suggest the existence of a single reversed region that spirals out from the Galactic center.


Astrophysical Journal Supplement Series | 2003

Rotation Measures of Compact Sources in the Canadian Galactic Plane Survey

J. C. Brown; A. R. Taylor; Brian James Jackel

The Canadian Galactic Plane Survey is providing new rotation measures (RMs) for compact extragalactic sources in the Galactic plane at a solid-angle density of roughly 1 source per square degree. To date, we have derived reliable RM values for 380 sources along lines of sight through the disk of the Galaxy in the first and second quadrants. The purpose is to provide a data set useful for studies of the magneto-ionic component of the Galactic interstellar medium (ISM). We present the method used to obtain the measurements and the resulting RMs.


Monthly Notices of the Royal Astronomical Society | 2012

Complex Faraday depth structure of active galactic nuclei as revealed by broad‐band radio polarimetry

S. P. O’Sullivan; Shea Brown; Timothy Robishaw; D. H. F. M. Schnitzeler; N. M. McClure-Griffiths; Ilana J. Feain; A. R. Taylor; B. M. Gaensler; T. L. Landecker; L. Harvey-Smith; E. Carretti

We present a detailed study of the Faraday depth structure of four bright (>1 Jy), strongly polarized, unresolved radio-loud quasars. The Australia Telescope Compact Array (ATCA) was used to observe these sources with 2 GHz of instantaneous bandwidth from 1.1 to 3.1 GHz. This allowed us to spectrally resolve the polarization structure of spatially unresolved radio sources, and by fitting various Faraday rotation models to the data, we conclusively demonstrate that two of the sources cannot be described by a simple rotation measure (RM) component modified by depolarization from a foreground Faraday screen. Our results have important implications for using background extragalactic radio sources as probes of the Galactic and intergalactic magneto-ionic media as we show how RM estimations from narrow-bandwidth observations can give erroneous results in the presence of multiple interfering Faraday components. We postulate that the additional RM components arise from polarized structure in the compact inner regions of the radio source itself and not from polarized emission from galactic or intergalactic foreground regions. We further suggest that this may contribute significantly to any RM time variability seen in RM studies on these angular scales. Follow-up, high-sensitivity very long baseline interferometry (VLBI) observations of these sources will directly test our predictions.


The Astrophysical Journal | 2007

RADIO POLARIMETRY OF THE ELAIS N1 FIELD: POLARIZED COMPACT SOURCES

A. R. Taylor; J. M. Stil; J. K. Grant; T. L. Landecker; Roland Kothes; R. I. Reid; A. D. Gray; Douglas Scott; P. G. Martin; Arnold I. Boothroyd; G. Joncas; Felix J. Lockman; Jayanne English; Anna Sajina; J. R. Bond

We present deep polarimetric observations at 1420 MHz of the European Large Area ISO Survey North 1 region (ELAIS N1) as part of the Dominion Radio Astrophysical Observatory Planck Deep Fields project. By combining closely spaced aperture synthesis fields, we image a region of 7.43 deg^2 to a maximum sensitivity in Stokes Q and U of 78 μJy beam^(-1), and detect 786 compact sources in Stokes I. Of these, 83 exhibit polarized emission. We find that the differential source counts (log N-log p) for polarized sources are nearly constant down to p > 500 μJy, and that these faint polarized radio sources are more highly polarized than the strong source population. The median fractional polarization is 4.8% ± 0.7% for polarized sources with Stokes I flux density between 10 and 30 mJy, approximately 3 times larger than sources with I > 100 mJy. The majority of the polarized sources have been identified with galaxies in the Spitzer Wide Area Infrared Extragalactic Survey (SWIRE) image of ELAIS N1. Most of the galaxies occupy regions in the IRAC 5.8 μm/3.6 μm versus 8.0 μm/4.5 μm color-color diagram associated with dusty AGNs, or with ellipticals with an aging stellar population. A few host galaxies have colors that suggests significant PAH emission in the near-infrared. A small fraction, 12%, of the polarized sources are not detected in the SWIRE data. None of the polarized sources in our sample appears to be associated with an actively star-forming galaxy.


The Astrophysical Journal | 1990

The collective radio properties of symbiotic stars

E.R. Seaquist; A. R. Taylor

Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs.


The Astrophysical Journal | 2011

STRUCTURE IN THE ROTATION MEASURE SKY

J. M. Stil; A. R. Taylor; C. Sunstrum

An analysis of structure in rotation measure (RM) across the sky based on the RM catalog of Taylor et al. is presented. Several resolved RM structures are identified with structure in the local interstellar medium, including radio loops I, II, and III, the Gum nebula, and the Orion-Eridanus superbubble. Structure functions (SFs) of RM are presented for selected areas, and maps of SF amplitude and slope across the sky are compared with Hα intensity and diffuse polarized intensity. RM variance on an angular scale of 1° is correlated with length of the line of sight through the Galaxy, with a contribution from local structures. The slope of the SFs is less concentrated to the Galactic plane and less correlated with length of the line of sight through the Galaxy, suggesting a more local origin for RM structure on angular scales ~10°. The RM variance is a factor of ~2 higher toward the South Galactic Pole than toward the North Galactic Pole, reflecting a more wide-spread asymmetry between the northern and southern Galactic hemispheres. Depolarization of diffuse Galactic synchrotron emission at latitudes <30° can be explained largely by Faraday dispersion related to small-scale variance in RM, but the errors allow a significant contribution from differential Faraday rotation along the line of sight.


The Astrophysical Journal | 2001

The Structure of the Magnetic Field in the Outer Galaxy from Rotation Measure Observations through the Disk

Jo-Anne Brown; A. R. Taylor

High-resolution 21 cm polarization data from the Canadian Galactic Plane Survey are yielding radio sources with well-defined rotation measures (RMs) at a solid angle density of roughly 1 source deg-2, approximately 10 times greater than previous RM surveys in the plane of the Galaxy. The predominance of negative RMs in the second quadrant suggests, in contradiction to previous work, that there is no global magnetic field reversal between the solar circle and the Perseus arm. In addition, these data reveal details in the magnetoionic medium not previously observed and suggest that the random component of the magnetic field may be preferentially aligned to the uniform component, in contrast to the common assumption of an isotropic distribution.

Collaboration


Dive into the A. R. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. M. McClure-Griffiths

Australia Telescope National Facility

View shared research outputs
Top Co-Authors

Avatar

T. L. Landecker

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. P. S. Eyres

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. T. Kenny

Royal Military College of Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge