A Reichenbach
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A Reichenbach.
Cerebral Cortex | 2010
Axel Thielscher; A Reichenbach; Kamil Ugurbil; Kâmil Uludağ
In visual suppression paradigms, transcranial magnetic stimulation (TMS) applied approximately 90 ms after visual stimulus presentation over occipital visual areas can robustly interfere with visual perception, thereby most likely affecting feedback activity from higher areas (Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. 1989. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458-462.). It is speculated that the observed effects might stem primarily from the disruption of V1 activity. This hypothesis, although under debate, argues in favor of a special role of V1 in visual awareness. In this study, we combine TMS, functional magnetic resonance imaging, and calculation of the induced electric field to study the neural correlates of visual suppression. For parafoveal visual stimulation in the lower right half of the visual field, area V2d is shown to be the likely TMS target based on its anatomical location close to the skull surface. Furthermore, isolated stimulation of area V3 also results in robust visual suppression. Notably, V3 stimulation does not directly affect the feedback from higher visual areas that is relayed mainly via V2 to V1. These findings support the view that intact activity patterns in several early visual areas (rather than merely in V1) are likewise important for the perception of the stimulus.
Cerebral Cortex | 2011
A Reichenbach; Jean-Pierre Bresciani; Angelika Peer; Hh Bülthoff; Axel Thielscher
The posterior parietal cortex (PPC) plays an important role in controlling voluntary movements by continuously integrating sensory information about body state and the environment. We tested which subregions of the PPC contribute to the processing of target- and body-related visual information while reaching for an object, using a reaching paradigm with 2 types of visual perturbation: displacement of the visual target and displacement of the visual feedback about the hand position. Initially, functional magnetic resonance imaging (fMRI) was used to localize putative target areas involved in online corrections of movements in response to perturbations. The causal contribution of these areas to online correction was tested in subsequent neuronavigated transcranial magnetic stimulation (TMS) experiments. Robust TMS effects occurred at distinct anatomical sites along the anterior intraparietal sulcus (aIPS) and the anterior part of the supramarginal gyrus for both perturbations. TMS over neighboring sites did not affect online control. Our results support the hypothesis that the aIPS is more generally involved in visually guided control of movements, independent of body effectors and nature of the visual information. Furthermore, they suggest that the human network of PPC subregions controlling goal-directed visuomotor processes extends more inferiorly than previously thought. Our results also point toward a good spatial specificity of the TMS effects.
The Journal of Physiology | 2009
A Reichenbach; Axel Thielscher; Angelika Peer; Hh Bülthoff; Jean-Pierre Bresciani
Goal‐directed movements are executed under the permanent supervision of the central nervous system, which continuously processes sensory afferents and triggers on‐line corrections if movement accuracy seems to be compromised. For arm reaching movements, visual information about the hand plays an important role in this supervision, notably improving reaching accuracy. Here, we tested whether visual feedback of the hand affects the latency of on‐line responses to an external perturbation when reaching for a visual target. Two types of perturbation were used: visual perturbation consisted in changing the spatial location of the target and kinesthetic perturbation in applying a force step to the reaching arm. For both types of perturbation, the hand trajectory and the electromyographic (EMG) activity of shoulder muscles were analysed to assess whether visual feedback of the hand speeds up on‐line corrections. Without visual feedback of the hand, on‐line responses to visual perturbation exhibited the longest latency. This latency was reduced by about 10% when visual feedback of the hand was provided. On the other hand, the latency of on‐line responses to kinesthetic perturbation was independent of the availability of visual feedback of the hand. In a control experiment, we tested the effect of visual feedback of the hand on visual and kinesthetic two‐choice reaction times – for which coordinate transformation is not critical. Two‐choice reaction times were never facilitated by visual feedback of the hand. Taken together, our results suggest that visual feedback of the hand speeds up on‐line corrections when the position of the visual target with respect to the body must be re‐computed during movement execution. This facilitation probably results from the possibility to map hand‐ and target‐related information in a common visual reference frame.
NeuroImage | 2014
A Reichenbach; Axel Thielscher; Angelika Peer; Hh Bülthoff; Jean-Pierre Bresciani
Seemingly effortless, we adjust our movements to continuously changing environments. After initiation of a goal-directed movement, the motor command is under constant control of sensory feedback loops. The main sensory signals contributing to movement control are vision and proprioception. Recent neuroimaging studies have focused mainly on identifying the parts of the posterior parietal cortex (PPC) that contribute to visually guided movements. We used event-related TMS and force perturbations of the reaching hand to test whether the same sub-regions of the left PPC contribute to the processing of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive feedback for online reaching control, and demonstrate that distinct cortical areas process proprioceptive-only and multi-sensory information for fast feedback corrections.
NeuroImage | 2016
A Reichenbach; Jean-Pierre Bresciani; Hh Bülthoff; Axel Thielscher
The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans.
NeuroImage | 2008
A Reichenbach; Axel Thielscher; Peer A, Bülthoff, Hh; J-Pp Bresciani
On the functional anatomy of intrinsic, phasic and self-induced alertness. Temporal changes in neural activation underlying cognitive learning processes in patients with schizophrenia: An fMRI study. The angular gyrus is equally involved in different aspects of action awareness. ERP and fMRI correlates of endogenous and exogenous mechanisms of spatial selective attention. Sustained attention in healthy siblings of schizophrenic patients: an event-related functional magnetic resonance study. A relevant analysis of task difficulty and brain activity during meter inspection: an fMRI study.
NeuroImage | 2007
Axel Thielscher; A Reichenbach; Kamil Ugurbil; Kâmil Uludağ
CONTENTS Welcome Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3 General Information: Registration, Social Events, Speaker Ready Room, Internet Café . . . . . . . . . . . . . . . . . . . S4 Sunday, June 10: Educational Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6 Basic fMRI Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6 Advanced fMRI Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S7 Advanced MEG/EEG Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8 Cognitive Neuroscience Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10 Structural Brain Mapping Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S11 Opening Ceremony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12 Monday, June 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13 Tuesday, June 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S19 Wednesday, June 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S25 Thursday, June 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S31 Schedule of Poster Presentations and List of Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S36 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S126 Exhibitor List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S156 Scientific Posters and Exhibitor Floor Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S160 Sheraton Floor Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S161 Council and Committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S163 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S167 Abstract Review Committee .
NeuroImage | 2011
A Reichenbach; Kevin Whittingstall; Axel Thielscher
Brain Stimulation | 2008
A Reichenbach; Jean-Pierre Bresciani; Angelika Peer; Hh Bülthoff; Axel Thielscher
CIN JRG Selection Symposium | 2015
A Reichenbach