A. Rod Gover
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Rod Gover.
Communications in Mathematical Physics | 2003
A. Rod Gover; Lawrence J. Peterson
Abstract: We describe an elementary algorithm for expressing, as explicit formulae in tractor calculus, the conformally invariant GJMS operators due to C.R. Graham et alia. These differential operators have leading part a power of the Laplacian. Conformal tractor calculus is the natural induced bundle calculus associated to the conformal Cartan connection. Applications discussed include standard formulae for these operators in terms of the Levi-Civita connection and its curvature and a direct definition and formula for T. Bransons so-called Q-curvature (which integrates to a global conformal invariant) as well as generalisations of the operators and the Q-curvature. Among examples, the operators of order 4, 6 and 8 and the related Q-curvatures are treated explicitly. The algorithm exploits the ambient metric construction of Fefferman and Graham and includes a procedure for converting the ambient curvature and its covariant derivatives into tractor calculus expressions. This is partly based on [12], where the relationship of the normal standard tractor bundle to the ambient construction is described.
Annals of Global Analysis and Geometry | 2003
Andreas Cap; A. Rod Gover
In this paper we relate the Fefferman–Graham ambientmetric construction for conformal manifolds to the approach toconformal geometry via the canonical Cartan connection. We show thatfrom any ambient metric that satisfies a weakening of the usualnormalisation condition, one can construct the conformal standardtractor bundle and the normal standard tractor connection, which areequivalent to the Cartan bundle and the Cartan connection. This resultis applied to obtain a procedure to get tractor formulae for allconformal invariants that can be obtained from the ambient metricconstruction. We also get information on ambient metrics whichare Ricci flat to higher order than guaranteed by the results ofFefferman–Graham.
Crelle's Journal | 2005
A. Rod Gover; C. Robin Graham
Abstract CR invariant differential operators on densities with leading part a power of the sub-Laplacian are derived. One family of such operators is constructed from the ‘‘conformally invariant powers of the Laplacian’’ via the Fefferman metric; the powers which arise for these operators are bounded in terms of the dimension. A second family is derived from a CR tractor calculus which is developed here; this family includes operators for every positive power of the sub-Laplacian. This result together with work of Čap, Slovák and Souček imply in three dimensions the existence of a curved analogue of each such operator in flat space.
Communications in Partial Differential Equations | 2005
Thomas P. Branson; A. Rod Gover
On conformal manifolds of even dimension n ≥ 4 we construct a family of new conformally invariant differential complexes, each containing one coboundary operator of order greater than 1. Each bundle in each of these complexes appears either in the de Rham complex or in its dual (which is a different complex in the non-orientable case). Each of the new complexes is elliptic in case the conformal structure has Riemannian signature. We also construct gauge companion operators which (for differential forms of order k ≤ n/2) complete the exterior derivative to a conformally invariant and (in the case of Riemannian signature) elliptically coercive system. These (operator, gauge) pairs are used to define finite dimensional conformally stable form subspaces which are are candidates for spaces of conformal harmonics. This generalizes the n/2-form and 0-form cases, in which the harmonics are given by conformally invariant systems. These constructions are based on a family of operators on closed forms which generalize in a natural way Bransons Q-curvature. We give a universal construction of these new operators and show that they yield new conformally invariant global pairings between differential form bundles. Finally we give a geometric construction of a family of conformally invariant differential operators between density-valued differential form bundles and develop their properties (including their ellipticity type in the case of definite conformal signature). The construction is based on the ambient metric of Fefferman and Graham, and its relationship to the tractor bundles for the Cartan normal conformal connection. For each form order, our derivation yields an operator of every even order in odd dimensions, and even order operators up to order n in even dimension n. In the case of unweighted (or true) forms as domain, these operators are the natural form analogues of the critical order conformal Laplacian of Graham et al., and are key ingredients in the new differential complexes mentioned above.
Differential Geometry and Its Applications | 2008
A. Rod Gover; Josef Šilhan
Abstract We construct a conformally invariant vector bundle connection such that its equation of parallel transport is a first order system that gives a prolongation of the conformal Killing equation on differential forms. Parallel sections of this connection are related bijectively to solutions of the conformal Killing equation. We construct other conformally invariant connections, also giving prolongations of the conformal Killing equation, that bijectively relate solutions of the conformal Killing equation on k-forms to a twisting of the conformal Killing equation on ( k − l ) -forms for various integers l. These tools are used to develop a helicity raising and lowering construction in the general setting and on conformally Einstein manifolds.
International Journal of Mathematics | 2009
A. Rod Gover; Felipe Leitner
Given any two Einstein (pseudo-)metrics, with scalar curvatures suitably related, we give an explicit construction of a Poincare–Einstein (pseudo-)metric with conformal infinity the conformal class of the product of the initial metrics. We show that these metrics are equivalent to ambient metrics for the given conformal structure. The ambient metrics have holonomy that agrees with the conformal holonomy. In the generic case the ambient metric arises directly as a product of the metric cones over the original Einstein spaces. In general the conformal infinity of the Poincare metric we construct is not Einstein, and so this describes a class of non-conformally Einstein metrics for which the (Fefferman–Graham) obstruction tensor vanishes.
Annals of Global Analysis and Geometry | 2010
Andreas Cap; A. Rod Gover
We prove that Fefferman spaces, associated to non-degenerate CR structures of hypersurface type, are characterised, up to local conformal isometry, by the existence of a parallel orthogonal complex structure on the standard tractor bundle. This condition can be equivalently expressed in terms of conformal holonomy. Extracting from this picture the essential consequences at the level of tensor bundles yields an improved, conformally invariant analogue of Sparling’s characterisation of Fefferman spaces.
Journal of Mathematical Physics | 2012
A. Rod Gover; Josef Šilhan
A.R.G. gratefully acknowledges support from the Royal Society of New Zealand via Marsden Grant Nos. 06-UOA-029 and 10-UOA-113. J.S. was supported by the Max-Planck-Institute fur Math- ¨ ematik in Bonn and by the Grant agency of the Czech republic under the Grant No. P201/12/G028.
Communications in Mathematical Physics | 2008
A. Rod Gover; Petr Somberg; Vladimír Souček
Working over a pseudo-Riemannian manifold, for each vector bundle with connection we construct a sequence of three differential operators which is a complex (termed a Yang-Mills detour complex) if and only if the connection satisfies the full Yang-Mills equations. A special case is a complex controlling the deformation theory of Yang-Mills connections. In the case of Riemannian signature the complex is elliptic. If the connection respects a metric on the bundle then the complex is formally self-adjoint. In dimension 4 the complex is conformally invariant and generalises, to the full Yang-Mills setting, the composition of (two operator) Yang-Mills complexes for (anti-)self-dual Yang-Mills connections. Via a prolonged system and tractor connection a diagram of differential operators is constructed which, when commutative, generates differential complexes of natural operators from the Yang-Mills detour complex. In dimension 4 this construction is conformally invariant and is used to yield two new sequences of conformal operators which are complexes if and only if the Bach tensor vanishes everywhere. In Riemannian signature these complexes are elliptic. In one case the first operator is the twistor operator and in the other sequence it is the operator for Einstein scales. The sequences are detour sequences associated to certain Bernstein-Gelfand-Gelfand sequences.
Memoirs of the American Mathematical Society | 2015
A. Rod Gover; Emanuele Latini; Andrew Waldron
We study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. We solve these Laplace-type boundary problems formally, and to all orders, by constructing an operator which projects arbitrary forms to solutions. We also develop a product formula for solving these asymptotic problems in general. The central tools of our approach are (i) the conformal geometry of differential forms and the associated exterior tractor calculus, and (ii) a generalised notion of scale which encodes the connection between the underlying geometry and its boundary. The latter also controls the breaking of conformal invariance in a very strict way by coupling conformally invariant equations to the scale tractor associated with the generalised scale. From this, we obtain a map from existing solutions to new ones that exchanges Dirichlet and Neumann boundary conditions. Together, the scale tractor and exterior structure extend the solution generating algebra of [31] to a conformally invariant, Poincare--Einstein calculus on (tractor) differential forms. This calculus leads to explicit holographic formulae for all the higher order conformal operators on weighted differential forms, differential complexes, and Q-operators of [9]. This complements the results of Aubry and Guillarmou [3] where associated conformal harmonic spaces parametrise smooth solutions.