A. Rod Merrill
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Rod Merrill.
The EMBO Journal | 2007
Derek J. Taylor; Jakob Nilsson; A. Rod Merrill; Gregers R. Andersen; Poul Nissen; Joachim Frank
On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA–tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF‐G in bacteria). We have obtained cryo‐EM reconstructions of eukaryotic ribosomes complexed with ADP‐ribosylated eEF2 (ADPR‐eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase‐coupled mechanism of translocation. Using the ADP‐ribosyl group as a distinct marker, we observe conformational changes of ADPR‐eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA–tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two‐step model of translocation that begins with the eEF2/EF‐G binding‐induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA–tRNA complex from the decoding center so translocation of the mRNA–tRNA moiety may be completed by a head rotation of the small subunit.
Nature | 2005
René Jørgensen; A. Rod Merrill; Susan P. Yates; Victor E. Marquez; Adrian L. Schwan; Thomas Boesen; Gregers R. Andersen
The bacteria causing diphtheria, whooping cough, cholera and other diseases secrete mono-ADP-ribosylating toxins that modify intracellular proteins. Here, we describe four structures of a catalytically active complex between a fragment of Pseudomonas aeruginosa exotoxin A (ETA) and its protein substrate, translation elongation factor 2 (eEF2). The target residue in eEF2, diphthamide (a modified histidine), spans across a cleft and faces the two phosphates and a ribose of the non-hydrolysable NAD+ analogue, βTAD. This suggests that the diphthamide is involved in triggering NAD+ cleavage and interacting with the proposed oxacarbenium intermediate during the nucleophilic substitution reaction, explaining the requirement of diphthamide for ADP ribosylation. Diphtheria toxin may recognize eEF2 in a manner similar to ETA. Notably, the toxin-bound βTAD phosphates mimic the phosphate backbone of two nucleotides in a conformational switch of 18S rRNA, thereby achieving universal recognition of eEF2 by ETA.
Journal of Biological Chemistry | 2008
Alexandra E. Purdy; Robert J. Fieldhouse; Matthew S. Kimber; Douglas H. Bartlett; A. Rod Merrill
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 ± 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 ± 2 μg/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-Å resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.
Trends in Biochemical Sciences | 2008
Robert J. Fieldhouse; A. Rod Merrill
In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint pressing research questions. Therefore, a strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. The strategy evolved from conduction of PSI-BLAST searches through to the combination of secondary-structure prediction with pattern-based searches. However, a newly developed tactic, in which fold recognition dominates, reduces reliance on sequence similarity and advances scientists toward a true structure-based protein-family expansion methodology.
Faraday Discussions | 2002
Sarah L. Horswell; Vlad Zamlynny; Hong-Qiang Li; A. Rod Merrill; Jacek Lipkowski
Chronocoulometry and photon polarisation modulation infrared reflection absorption spectroscopy (PM-IRRAS) have been employed to study the fusion of dimyristoylphosphatidylcholine (DMPC) vesicles onto a Au(111) electrode surface. The results show that fusion of the vesicles is controlled by the electrode potential or charge at the electrode surface (sigmaM). At charge densities of -15 microC cm(-2) < sigmaM < 0 microC cm(-2), DMPC vesicles fuse to form a condensed film. When sigmaM < -15 microC cm(-2), de-wetting of the film from the electrode surface occurs. The film is detached from the electrode surface; however, phospholipid molecules remain in its close proximity in an ad-vesicle state. The state of the film can be conveniently changed by adjustment of the potential applied to the gold electrode. PM-IRRAS experiments demonstrated that the potential-controlled transitions between various DMPC states proceed without conformational changes and changes in the packing of the acyl chains of DMPC molecules. However, a remarkable change in the tilt angle of the acyl chains with respect to the surface normal occurs when ad-vesicles spread to form a film at the gold surface. When the bilayer is formed at the gold surface, the acyl chains of DMPC molecules are significantly tilted. The IR spectra have also demonstrated a pronounced change in the hydration of the polar head region that accompanies the spreading of ad-vesicles into the film. For the film deposited at the electrode surface, the infrared results showed that the temperature-controlled phase transition from the gel state to the liquid crystalline state occurs within the same temperature range as that observed for aqueous solutions of vesicles. The results presented in this work show that PM-FTIR spectroscopy, in combination with electrochemical techniques, is an extremely powerful tool for the study of the structure of model membrane systems at electrode surfaces.
Biochemical Journal | 2005
Susan P. Yates; Patricia L. Taylor; René Jørgensen; Dana Ferraris; Jie Zhang; Gregers R. Andersen; A. Rod Merrill
The mono-ADPRT (mono-ADP-ribosyltransferase), Pseudomonas aeruginosa ETA (exotoxin A), catalyses the transfer of ADP-ribose from NAD+ to its protein substrate. A series of water-soluble compounds that structurally mimic the nicotinamide moiety of NAD+ was investigated for their inhibition of the catalytic domain of ETA. The importance of an amide locked into a hetero-ring structure and a core hetero-ring system that is planar was a trend evident by the IC50 values. Also, the weaker inhibitors have core ring structures that are less planar and thus more flexible. One of the most potent inhibitors, PJ34, was further characterized and shown to exhibit competitive inhibition with an inhibition constant K(i) of 140 nM. We also report the crystal structure of the catalytic domain of ETA in complex with PJ34, the first example of a mono-ADPRT in complex with an inhibitor. The 2.1 A (1 A=0.1 nm) resolution structure revealed that PJ34 is bound within the nicotinamide-binding pocket and forms stabilizing hydrogen bonds with the main chain of Gly-441 and to the side-chain oxygen of Gln-485, a member of a proposed catalytic loop. Structural comparison of this inhibitor complex with diphtheria toxin (a mono-ADPRT) and with PARPs [poly(ADP-ribose) polymerases] shows similarity of the catalytic residues; however, a loop similar to that found in ETA is present in diphtheria toxin but not in PARP. The present study provides insight into the important features required for inhibitors that mimic NAD+ and their binding to the mono-ADPRT family of toxins.
Biochemical Journal | 2006
Chun Kim; Zoya Slavinskaya; A. Rod Merrill; Stefan H. E. Kaufmann
Various bacterial pathogens secrete toxins, which are not only responsible for fatal pathogenesis of disease, but also facilitate evasion of host defences. One of the best-known bacterial toxin groups is the mono-ADP-ribosyltransferase family. In the present study, we demonstrate that human neutrophil alpha-defensins are potent inhibitors of the bacterial enzymes, particularly against DT (diphtheria toxin) and ETA (Pseudomonas exotoxin A). HNP1 (human neutrophil protein 1) inhibited DT- or ETA-mediated ADP-ribosylation of eEF2 (eukaryotic elongation factor 2) and protected HeLa cells against DT- or ETA-induced cell death. Kinetic analysis revealed that inhibition of DT and ETA by HNP1 was competitive with respect to eEF2 and uncompetitive against NAD+ substrates. Our results reveal that toxin neutralization represents a novel biological function of HNPs in host defence.
PLOS Computational Biology | 2010
Robert J. Fieldhouse; Zachari Turgeon; Dawn White; A. Rod Merrill
Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases.
Journal of Biological Chemistry | 2010
Danielle D. Visschedyk; Alexandru A. Perieteanu; Zachari Turgeon; Robert J. Fieldhouse; John F. Dawson; A. Rod Merrill
Photorhabdus luminescens is a pathogenic bacterium that produces many toxic proteins. The mono-ADP-ribosyltransferases (mARTs) are an enzyme class produced by numerous pathogenic bacteria and participate in disease in plants and animals, including humans. Herein we report a novel mART from P. luminescens called Photox. This 46-kDa toxin shows high homology to other actin-targeting mARTs in hallmark catalytic regions and a similar core catalytic fold. Furthermore, Photox shows in vivo cytotoxic activity against yeast, with protection occurring when catalytic residues are substituted with alanine. In vitro, enzymatic activity (kcat, 1680 ± 75 min−1) is higher than that of the related iota toxin, and diminishes by nearly 14,000-fold following substitution of the catalytic Glu (E355A). This toxin specifically ADP-ribosylates monomeric α-skeletal actin and nonmuscle β- and γ-actin at Arg177, inhibiting regular polymerization of actin filaments. These results indicate that Photox is indeed an ADP-ribosyltransferase, making it the newest member of the actin-targeting mART family.
Biochimica et Biophysica Acta | 2002
Monica C Tory; A. Rod Merrill
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404 W, F-413 W, F-443 W, F-484 W, and W-495 peptides exhibited small and/or insignificant REES changes (Delta REES) whereas W-424, F-431 W, and Y-507 W channel peptides possessed modest REES changes (3 nm< or = Delta REES< or = 7 nm). In contrast, wild-type, Y-367 W, W-460, Y-478 W, and I-499 W channel peptides showed large Delta REES values upon membrane binding (7 nm< Delta REES< or =12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.