Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. S. Evans is active.

Publication


Featured researches published by A. S. Evans.


Astronomy and Astrophysics | 2010

Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231

P. van der Werf; Kate Gudrun Isaak; R. Meijerink; Marco Spaans; Adam John Rykala; T. Fulton; A. F. Loenen; F. Walter; A. Weiß; Lee Armus; J. Fischer; F. P. Israel; A. I. Harris; Sylvain Veilleux; C. Henkel; G. Savini; S. Lord; H. A. Smith; E. González-Alfonso; David A. Naylor; Susanne Aalto; V. Charmandaris; K. M. Dasyra; A. S. Evans; Yu Gao; T. R. Greve; R. Güsten; C. Kramer; J. Martin-Pintado; Joseph M. Mazzarella

We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.


The Astrophysical Journal | 2013

Explaining the [C II]157.7 μm Deficit in Luminous Infrared Galaxies : First Results from a Herschel/PACS Study of the GOALS Sample

T. Díaz-Santos; Lee Armus; V. Charmandaris; Sabrina Stierwalt; Elaine Murphy; S. Haan; H. Inami; Sangeeta Malhotra; R. Meijerink; G. J. Stacey; Andreea Oana Petric; A. S. Evans; Sylvain Veilleux; P. van der Werf; S. Lord; N. Lu; Justin Howell; P. N. Appleton; J. M. Mazzarella; Jason A. Surace; C. K. Xu; B. Schulz; D. B. Sanders; C. Bridge; Ben Hiu Pan Chan; D. T. Frayer; Kazushi Iwasawa; J. Melbourne; E. Sturm

We present the first results of a survey of the [C II] 157.7 μm emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky Survey (GOALS) sample, obtained with the PACS instrument on board the Herschel Space Observatory. The [C II] luminosities, L_([C II]), of the LIRGs in GOALS range from ∼ 10^7 to 2×10^9 L_⊙. We find that LIRGs show a tight correlation of [C II]/FIR with far-IR flux density ratios, with a strong negative trend spanning from ∼ 10^(−2) to 10^(−4), as the average temperature of dust increases. We find correlations between the [C II]/FIR ratio and the strength of the 9.7 μm silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region (∑_(MIR)), suggesting that warmer, more compact starbursts have substantially smaller [C II]/FIR ratios. Pure star-forming LIRGs have a mean [C II]/FIR∼ 4 × 10^(−3), while galaxies with low 6.2 μm PAH equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGN), span the full range in [C II]/FIR. However, we show that even when only pure star-forming galaxies are considered, the [C II]/FIR ratio still drops by an order of magnitude, from 10^(−2) to 10^(−3), with ∑_(MIR) and ∑_(IR), implying that the [C II] 157.7 μm luminosity is not a good indicator of the star formation rate (SFR) for most LIRGs, for it does not scale linearly with the warm dust emission most likely associated to the youngest stars. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [C II]/FIR≥ 10^(−3) typical of high 6.2 μm PAH EW sources, suggesting that most AGNs do not contribute significantly to the far-IR emission. We provide an empirical relation between the [C II]/FIR and the specific SFR (SSFR) for star-forming LIRGs. Finally, we present predictions for the starburst size based on the observed [C II] and far-IR luminosities which should be useful for comparing with results from future surveys of high-redshift galaxies with ALMA and CCAT.


The Astrophysical Journal | 2011

MID-INFRARED SPECTRAL DIAGNOSTICS OF LUMINOUS INFRARED GALAXIES

Andreea Oana Petric; Lee Armus; Justin Howell; Ben Hiu Pan Chan; Joseph M. Mazzarella; A. S. Evans; Jason A. Surace; David B. Sanders; P. N. Appleton; V. Charmandaris; T. Díaz-Santos; D. T. Frayer; S. Haan; Hanae Inami; Kazushi Iwasawa; D. C. Kim; Barry F. Madore; J. Marshall; H. W. W. Spoon; Sabrina Stierwalt; E. Sturm; Tatjana Vavilkin; Sylvain Veilleux

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board Spitzer in the rest-frame wavelength range between 5 and 38 µm. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large, statistically complete sample of LIRGs in the local Universe.Several diagnostics effective at isolating the AGN contribution to the Mid-infrared (MIR) emission using [NeV], [OIV] and [NeII] gas emission lines, the 6.2 µm PAH equivalent width (EQW) and the shape of the MIR continuum are compared. The [NeV] line which indicates the presence of an AGN is detected in 22% of all LIRGs. The 6.2 µm PAH EQW, [NeV]/L_(IR), [NeV]/[NeII] and [OIV]/[NeII] ratios, and the ratios of 6.2 µm PAH flux to the integrated continuum flux between 5.3 and 5.8 µm suggest values of around 10% for the fractional AGN contribution to the total IR luminosity of LIRGs. The median of these estimates suggests that for local LIRGs the fractional AGN contribution to the total IR luminosity is ~12%. AGN dominated LIRGs have higher global and nuclear IR luminosities, warmer MIR colors and are interacting more than starburst (SB) dominated LIRGs. However there are no obvious linear correlations between these properties, suggesting that none of these properties alone can determine the activity and evolution of an individual LIRG. A study of the IRAC colors of LIRGs confirms that methods of finding AGN on the basis of their MIR colors are effective at choosing AGN but 50% to 40% of AGN dominated LIRGs are not selected as such with these methods.


Astronomy and Astrophysics | 2011

C-GOALS: Chandra observations of a complete sample of luminous infrared galaxies from the IRAS Revised Bright Galaxy Survey

Kazushi Iwasawa; D. B. Sanders; Stacy H. Teng; Lee Armus; A. S. Evans; Justin Howell; Stefanie Komossa; Joseph M. Mazzarella; Andreea Oana Petric; Jason A. Surace; Tatjana Vavilkin; Sylvain Veilleux; N. Trentham

We present X-ray data for a complete sample of 44 luminous infrared galaxies (LIRGs), obtained with the Chandra X-ray Observatory. These are the X-ray observations of the high luminosity portion of the Great Observatory All-sky LIRG Survey (GOALS), which includes the most luminous infrared selected galaxies, log (L_(ir)/L_⊙) ≥ 11.73, in the local universe, z ≤ 0.088. X-rays were detected from 43 out of 44 objects, and their arcsec-resolution images, spectra, and radial brightness distributions are presented. With a selection by hard X-ray colour and the 6.4 keV iron line, AGN are found in 37% of the objects, with higher luminosity sources more likely to contain an AGN. These AGN also tend to be found in late-stage mergers. The AGN fraction would increase to 48% if objects with [Ne v]λ14.3 μm detection are included. Double AGN are clearly detected only in NGC 6240 among 24 double/triple systems. Other AGN are found either in single nucleus objects or in one of the double nuclei at similar rates. Objects without conventional X-ray signatures of AGN appear to be hard X-ray quiet, relative to the X-ray to far-IR correlation for starburst galaxies, as discussed elsewhere. Most objects also show extended soft X-ray emission, which is likely related to an outflow from the nuclear region, with a metal abundance pattern suggesting enrichment by core collapse supernovae, as expected for a starburst.


The Astrophysical Journal | 2012

STRONG MOLECULAR HYDROGEN EMISSION AND KINEMATICS OF THE MULTIPHASE GAS IN RADIO GALAXIES WITH FAST JET-DRIVEN OUTFLOWS

Pierre Guillard; P. Ogle; B. Emonts; Philip N. Appleton; Raffaella Morganti; C. N. Tadhunter; Tom Oosterloo; Daniel A. Evans; A. S. Evans

Observations of ionized and neutral gas outflows in radio galaxies (RGs) suggest that active galactic nucleus (AGN) radio jet feedback has a galaxy-scale impact on the host interstellar medium, but it is still unclear how the molecular gas is affected. Thus, it is crucial to determine the physical conditions of the molecular gas in powerful RGs to understandhowradiosourcesmayregulatethestarformationintheirhostgalaxies.WepresentdeepSpitzerInfrared Spectrograph (IRS) high-resolution spectroscopy of eight nearby RGs that show fast Hi outflows. Strikingly, all of these Hi-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV or X-ray heating. This strongly suggests that the radio jet, which drives the Hi outflow, is also responsible for the shock excitation of the warm H2 gas. In addition, the warm H2 gas does not share the kinematics of the ionized/neutral gas. The mid-IR-ionized gas lines (with FWHM up to 1250 km s −1 for [Neii]12.8 μm) are systematically broader than the H2 lines, which are resolved by the IRS in ≈60% of the detected lines (with FWHM up to 900 km s −1 ). In five sources, 3C 236, 3C 293, 3C 459, 4C 12.50, and PKS 1549-79, the [Neii]12.8 μm line, and to a lesser extent the [Neiii]15.5 μm and [Nev]14.3 μm lines, clearly exhibits blueshifted wings (up to −900 km s −1 with respect to the systemic velocity) that match well the kinematics of the outflowing Hi or ionized gas. The H2 lines do not show these broad wings, except tentative detections in 4C 12.50, 3C 459, and PKS 1549-79. This shows that, contrary to the Hi gas, the H2 gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the turbulent heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.


The Astrophysical Journal | 2013

Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy

R. Meijerink; L. E. Kristensen; A. Weiß; P. van der Werf; F. Walter; M. Spaans; A. F. Loenen; J. Fischer; F. P. Israel; Kate Gudrun Isaak; Padelis P. Papadopoulos; Susanne Aalto; Lee Armus; V. Charmandaris; K. M. Dasyra; T. Díaz-Santos; A. S. Evans; Yu Gao; E. González-Alfonso; R. Güsten; C. Henkel; C. Kramer; S. Lord; J. Martin-Pintado; David A. Naylor; D. B. Sanders; H. A. Smith; L. Spinoglio; G. J. Stacey; Sylvain Veilleux

We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J = 4-3 through J = 13-12, 6 H2O rotational lines, and [C I] and [N II] fine-structure lines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shock models to the H-2 v = 1-0 S(1) and v = 2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v(s) = 10 km s(-1) and a pre-shock density n(H) = 5 x 10(4) cm(-3). We find that the solution best fitting the H-2 lines is degenerate. The shock velocities and number densities range between v(s) = 17-47 km s(-1) and n(H) = 10(7)-5x10(4) cm(-3), respectively. The H-2 lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s(-1)) shocks while only a small fraction (less than or similar to 1%) of the interstellar medium is exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.


Astrophysical Journal Supplement Series | 2012

SPECTRAL ENERGY DISTRIBUTIONS OF LOCAL LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES

Vivian U; David B. Sanders; Joseph M. Mazzarella; A. S. Evans; Justin Howell; Jason A. Surace; Lee Armus; Kazushi Iwasawa; D.-C. Kim; Caitlin M. Casey; Tatjana Vavilkin; Michele Dufault; Kirsten Larson; Joshua E. Barnes; Ben H. P. Chan; David T. Frayer; S. Haan; Hanae Inami; Cathy M. Ishida; J. Kartaltepe; J. Melbourne; Andreea Oana Petric

Luminous (LIRGs; log (L IR/L ☉) = 11.00-11.99) and ultraluminous infrared galaxies (ULIRGs; log (L_(IR)/L_☉) = 12.00-12.99) are the most extreme star-forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison with their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths and spectral energy distributions (SEDs) for a sample of 53 nearby (z 5.24 Jy) Great Observatories All-sky LIRG Survey. The SEDs for all objects are similar in that they show a broad, thermal stellar peak (~0.3-2 μm), and a dominant FIR (~40-200 μm) thermal dust peak, where νL_ν(60 μm)/νL_ν(V) increases from ~2 to 30 with increasing L_(IR). When normalized at IRAS 60 μm, the largest range in the luminosity ratio, R(λ) ≡ log[νL_ν(λ)/νL_ν(60 μm)], observed over the full sample is seen in the hard X-rays (HX = 2-10 keV), where ΔR_(HX) = 3.73 (R_(HX) = -3.10). A small range is found in the radio (1.4 GHz), ΔR_(1.4 GHz) = 1.75, where the mean ratio is largest, (R__(1.4GHz) = -5.81). Total infrared luminosities, L_(IR)(8-1000 μm), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log (M_★/M_☉) = 10.79 ± 0.40. Star formation rates have been determined from the infrared (SFR_(IR) ~ 45 M_☉ yr^(–1)) and from the monochromatic UV luminosities (SFR_(UV) ~ 1.3 M_☉ yr^(–1)), respectively. Multi-wavelength active galactic nucleus (AGN) indicators have be used to select putative AGNs: About 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.


The Astronomical Journal | 2011

THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE

S. Haan; Jason A. Surace; Lee Armus; A. S. Evans; Justin Howell; Joseph M. Mazzarella; D. C. Kim; Tatjana Vavilkin; Hanae Inami; D. B. Sanders; Andreea Oana Petric; C. Bridge; J. Melbourne; V. Charmandaris; T. Díaz-Santos; E. J. Murphy; Sabrina Stierwalt; J. Marshall

We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.


The Astrophysical Journal | 2010

The Spatial Extent of (U)LIRGs in the Mid-infrared. I. The Continuum Emission

T. Díaz-Santos; V. Charmandaris; Lee Armus; Andreea Oana Petric; Justin Howell; E. J. Murphy; Joseph M. Mazzarella; S. Veilleux; Gregory David Bothun; Hanae Inami; P. N. Appleton; A. S. Evans; S. Haan; J. Marshall; D. B. Sanders; Sabrina Stierwalt; Jason A. Surace

We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey sample based on 5–15μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for the galaxies in the sample, FEE_λ, defined as the fraction of the emission which originates outside of the unresolved component of a source at a given distance. We find that the FEE_λ varies from one galaxy to another, but we can identify three general types of FEE_λ: one where FEE_λ is constant, one where features due to emission lines and polycyclic aromatic hydrocarbons appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7 μm. More than 30% of the galaxies have a median FEE_λ larger than 0.5, implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0 ≲ FEE_(13.2μm) ≲ 0.85). The large values of FEE_(13.2μm) that we find in many LIRGs suggest that the extended component of their MIR continuum emission originates in scales up to 10 kpc and may contribute as much as the nuclear region to their total MIR luminosity. The mean size of the LIRG cores at 13.2 μm is 2.6 kpc. However, once the IR luminosity of the systems reaches the threshold of L_(IR) ~ 10^(11.8) L_⊙, slightly below the regime of Ultra-luminous Infrared Galaxies (ULIRGs), all sources become clearly more compact, with FEE_(13.2μm) ≲ 0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5 kpc. Furthermore, our analysis indicates that the compactness of systems with L_(IR) ≳ 10^(11.25) L_⊙ strongly increases in those classified as mergers in their final stage of interaction. The FEE_(13.2μm) is also related to the contribution of an active galactic nucleus (AGN) to the MIR emission. Galaxies which are more AGN dominated are less extended, independently of their L_(IR). We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_(60μm)/f_(100μm)) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.


The Astrophysical Journal | 2015

The Herschel Comprehensive (U)LIRG Emission Survey (HERCULES): CO Ladders, Fine Structure Lines, and Neutral Gas Cooling

M. J. F. Rosenberg; P. van der Werf; Susanne Aalto; Lee Armus; V. Charmandaris; T. Díaz-Santos; A. S. Evans; J. Fischer; Yu Gao; E. González-Alfonso; T. R. Greve; A. I. Harris; C. Henkel; F. P. Israel; Kate Gudrun Isaak; C. Kramer; R. Meijerink; David A. Naylor; D. B. Sanders; H. A. Smith; M. Spaans; L. Spinoglio; G. J. Stacey; Ian Veenendaal; Sylvain Veilleux; F. Walter; A. Weiß; Martina C. Wiedner; M. H. D. van der Wiel; E. M. Xilouris

(Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot) <= L-IR <= 10(13)L(circle dot)). With the Herschel Space Observatory, we observe [CII] 157 mu m, [O I] 63 mu m, and [O I] 145 mu m line emission with Photodetector Array Camera and Spectrometer, CO J = 4-3 through J = 13-12, [C I] 370 mu m, and [C I] 609 mu m with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [O I] 63 mu m emission line is self absorbed. Comparing the CO excitation to the InfraRed Astronomical Satellite 60/100 mu m ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [C II], [Si II], [O I], and [C I] lines in the objects with the highest far IR fluxes, but do not observe this for CO 4 <= J(upp) <= 13. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J = 1-0 linewidth, and the active galactic nucleus (AGN) contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important.

Collaboration


Dive into the A. S. Evans's collaboration.

Top Co-Authors

Avatar

Lee Armus

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason A. Surace

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Mazzarella

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. Díaz-Santos

Diego Portales University

View shared research outputs
Top Co-Authors

Avatar

Justin Howell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreea Oana Petric

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. Murphy

National Radio Astronomy Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge