A.-S. LaMantia
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A.-S. LaMantia.
Neuron | 2011
Maria K. Lehtinen; Mauro W. Zappaterra; Xi Chen; Yawei J. Yang; Anthony D. Hill; Melody P. Lun; Thomas M. Maynard; Dilenny M. Gonzalez; Seonhee Kim; Ping Ye; A. Joseph D'Ercole; Eric T. Wong; A.-S. LaMantia; Christopher A. Walsh
Cortical development depends on the active integration of cell-autonomous and extrinsic cues, but the coordination of these processes is poorly understood. Here, we show that the apical complex protein Pals1 and Pten have opposing roles in localizing the Igf1R to the apical, ventricular domain of cerebral cortical progenitor cells. We found that the cerebrospinal fluid (CSF), which contacts this apical domain, has an age-dependent effect on proliferation, much of which is attributable to Igf2, but that CSF contains other signaling activities as well. CSF samples from patients with glioblastoma multiforme show elevated Igf2 and stimulate stem cell proliferation in an Igf2-dependent manner. Together, our findings demonstrate that the apical complex couples intrinsic and extrinsic signaling, enabling progenitors to sense and respond appropriately to diffusible CSF-borne signals distributed widely throughout the brain. The temporal control of CSF composition may have critical relevance to normal development and neuropathological conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Thomas M. Maynard; Gloria Thompson Haskell; A.Z. Peters; Linmarie Sikich; Jeffrey A. Lieberman; A.-S. LaMantia
Deletions at 22q11.2 are linked to DiGeorge or velocardiofacial syndrome (VCFS), whose hallmarks include heart, limb, and craniofacial anomalies, as well as learning disabilities and increased incidence of schizophrenia. To assess the potential contribution of 22q11 genes to cognitive and psychiatric phenotypes, we determined the CNS expression of 32 mouse orthologs of 22q11 genes, primarily in the 1.5-Mb minimal critical region consistently deleted in VCFS. None are uniquely expressed in the developing or adult mouse brain. Instead, 27 are localized in the embryonic forebrain as well as aortic arches, branchial arches, and limb buds. Each continues to be expressed at apparently constant levels in the fetal, postnatal, and adult brain, except for Tbx1, ProDH2, and T10, which increase in adolescence and decline in maturity. At least six 22q11 proteins are seen primarily in subsets of neurons, including some in forebrain regions thought to be altered in schizophrenia. Thus, 22q11 deletion may disrupt expression of multiple genes during development and maturation of neurons and circuits compromised by cognitive and psychiatric disorders associated with VCFS.
Neuron | 2010
Seonhee Kim; Maria K. Lehtinen; Alessandro Sessa; Mauro W. Zappaterra; Seo-Hee Cho; Dilenny M. Gonzalez; Brigid Boggan; Christina Austin; Jan Wijnholds; Michael J. Gambello; Jarema Malicki; A.-S. LaMantia; Vania Broccoli; Christopher A. Walsh
Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling.
Molecular and Cellular Neuroscience | 2000
Kevin D. Courtney; Matthew Grove; Hendrika M. A. VanDongen; Antonius M. J. VanDongen; A.-S. LaMantia; Ann Marie Pendergast
Abl-interactor (Abi) proteins are targets of Abl-family nonreceptor tyrosine kinases and are required for Rac-dependent cytoskeletal reorganization in response to growth factor stimulation. We asked if the expression, phosphorylation, and cellular localization of Abi-1 and Abi-2 supports a role for these proteins in Abl signaling in the developing and adult mouse nervous system. In mid- to late-gestation embryos, abi-2 message is elevated in the central and peripheral nervous systems (CNS and PNS). Abi-1 mRNA is present, but not enhanced, in the CNS, and is not observed in PNS structures. Abi proteins from brain lysates undergo changes in apparent molecular weight and phosphorylation with increasing age. In the postnatal brain, abi-1 and abi-2 are expressed most prominently in cortical layers populated by projection neurons. In cultured neurons, Abi-1 and Abi-2 are concentrated in puncta throughout the cell body and processes. Both Abi and Abl proteins are present in synaptosomes and growth cone particles. Therefore, the Abi adaptors exhibit proper expression patterns and subcellular localization to participate in Abl kinase signaling in the nervous system.
Molecular and Cellular Neuroscience | 2008
Thomas M. Maynard; Daniel W. Meechan; M.L. Dudevoir; D. Gopalakrishna; A.Z. Peters; Clifford Heindel; T.J. Sugimoto; Y. Wu; Jeffrey A. Lieberman; A.-S. LaMantia
Six genes in the 1.5 Mb region of chromosome 22 deleted in DiGeorge/22q11 deletion syndrome-Mrpl40, Prodh, Slc25a1, Txnrd2, T10, and Zdhhc8-encode mitochondrial proteins. All six genes are expressed in the brain, and maximal expression coincides with peak forebrain synaptogenesis shortly after birth. Furthermore, their protein products are associated with brain mitochondria, including those in synaptic terminals. Among the six, only Zddhc8 influences mitochondria-regulated apoptosis when overexpressed, and appears to interact biochemically with established mitochondrial proteins. Zdhhc8 has an apparent interaction with Uqcrc1, a component of mitochondrial complex III. The two proteins are coincidently expressed in pre-synaptic processes; however, Zdhhc8 is more frequently seen in glutamatergic terminals. 22q11 deletion may alter metabolic properties of cortical mitochondria during early post-natal life, since expression complex III components, including Uqcrc1, is significantly increased at birth in a mouse model of 22q11 deletion, and declines to normal values in adulthood. Our results suggest that altered dosage of one, or several 22q11 mitochondrial genes, particularly during early post-natal cortical development, may disrupt neuronal metabolism or synaptic signaling.
Developmental Biology | 2003
Naina Bhasin; Thomas M. Maynard; Gallagher Pa; A.-S. LaMantia
We asked whether mesenchymal/epithelial (M/E) interactions regulate retinoic acid (RA) signaling in the olfactory placode and whether this regulation is similar to that at other sites of induction, including the limbs, branchial arches, and heart. RA is produced by the mesenchyme at all sites, and subsets of mesenchymal cells express the RA synthetic enzyme RALDH2, independent of M/E interactions. In the placode, RA-producing mesenchyme is further distinguished by its coincidence with a molecularly distinct population of neural crest-associated cells. At all sites, expression of additional RA signaling molecules (RARalpha, RARbeta, RXR, CRABP1) depends on M/E interactions. Of these molecules, RA regulates only RARbeta, and this regulation depends on M/E interaction. Expression of Fgf8, shh, and Bmp4, all of which are thought to influence RA signaling, is also regulated by M/E interactions independent of RA at all sites. Despite these common features, RALDH3 expression is distinct in the placode, as is regulation of RARbeta and RALDH2 by Fgf8. Thus, M/E interactions regulate expression of RA receptors and cofactors in the olfactory placode and other inductive sites. Some aspects of regulation in the placode are distinct, perhaps reflecting unique roles for additional local signals in neuronal differentiation in the developing olfactory pathway.
International Journal of Developmental Neuroscience | 2011
Daniel W. Meechan; Thomas M. Maynard; Eric S. Tucker; A.-S. LaMantia
DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.
Molecular and Cellular Neuroscience | 2006
Daniel W. Meechan; Thomas M. Maynard; Y. Wu; D. Gopalakrishna; Jeffrey A. Lieberman; A.-S. LaMantia
We evaluated the consequences of heterozygous chromosome 22q11 deletion - a significant genetic risk for schizophrenia - for expression levels and patterns of a subset of 22q11 genes implicated in schizophrenia and other phenotypes in mouse models of 22q11 deletion syndrome (22q11DS). In deleted embryos, expression levels of at least nine 22q11 orthologues decline by 40-60% in the frontonasal mass/forebrain and other 22q11DS phenotypic sites (branchial and aortic arches, limb buds); however, coincident expression patterns of 22q11 and Snail genes - diagnostic for neural crest-derived mesenchyme - are unchanged, and Snail1 expression levels do not decline. Subsequently, 22q11 mRNA levels are reduced by 40-60% in the brains of developing, adolescent and adult deleted mice without altered expression patterns, dysmorphology or reduced cell density. Apparently, in deleted individuals, 22q11 gene expression declines across otherwise stable cell populations, perhaps disrupting individual cell function via diminished dosage. Such changes might contribute to schizophrenia vulnerability in 22q11DS.
Neuroscience | 2009
E.T. Cox; Leann H. Brennaman; Karissa Gable; Robert M. Hamer; Leisa A. Glantz; A.-S. LaMantia; Jeffrey A. Lieberman; John H. Gilmore; Patricia F. Maness; L.F. Jarskog
Neural cell adhesion molecule (NCAM) is a membrane-bound cell recognition molecule that exerts important functions in normal neurodevelopment including cell migration, neurite outgrowth, axon fasciculation, and synaptic plasticity. Alternative splicing of NCAM mRNA generates three main protein isoforms: NCAM-180, -140, and -120. Ectodomain shedding of NCAM isoforms can produce an extracellular 105-115 kilodalton soluble neural cell adhesion molecule fragment (NCAM-EC) and a smaller intracellular cytoplasmic fragment (NCAM-IC). NCAM also undergoes a unique post-translational modification in brain by the addition of polysialic acid (PSA)-NCAM. Interestingly, both PSA-NCAM and NCAM-EC have been implicated in the pathophysiology of schizophrenia. The developmental expression patterns of the main NCAM isoforms and PSA-NCAM have been described in rodent brain, but no studies have examined NCAM expression across human cortical development. Western blotting was used to quantify NCAM in human postmortem prefrontal cortex in 42 individuals ranging in age from mid-gestation to early adulthood. Each NCAM isoform (NCAM-180, -140, and -120), post-translational modification (PSA-NCAM) and cleavage fragment (NCAM-EC and NCAM-IC) demonstrated developmental regulation in frontal cortex. NCAM-180, -140, and -120, as well as PSA-NCAM, and NCAM-IC all showed strong developmental regulation during fetal and early postnatal ages, consistent with their identified roles in axon growth and plasticity. NCAM-EC demonstrated a more gradual increase from the early postnatal period to reach a plateau by early adolescence, potentially implicating involvement in later developmental processes. In summary, this study implicates the major NCAM isoforms, PSA-NCAM and proteolytically cleaved NCAM in pre- and postnatal development of the human prefrontal cortex. These data provide new insights on human cortical development and also provide a basis for how altered NCAM signaling during specific developmental intervals could affect synaptic connectivity and circuit formation, and thereby contribute to neurodevelopmental disorders.
Molecular Psychiatry | 2017
Pascal Steullet; Jan-Harry Cabungcal; Joseph T. Coyle; Michael Didriksen; K. Gill; Anthony A. Grace; Takao K. Hensch; A.-S. LaMantia; L. Lindemann; Thomas M. Maynard; Urs Meyer; Hirofumi Morishita; P. O'Donnell; M. Puhl; Michel Cuenod; Kim Q. Do
Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.