A. Sarti
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Sarti.
Journal of Instrumentation | 2013
A. A. Alves; L. Anderlini; M. Anelli; R. Antunes Nobrega; G. Auriemma; W. Baldini; G. Bencivenni; R. Berutti; A. Bizzeti; V. Bocci; N. Bondar; W. Bonivento; B. Botchin; S. Cadeddu; P. Campana; G. Carboni; A. Cardini; M. Carletti; P. Ciambrone; E. Dane; S. De Capua; V. De Leo; C. Deplano; P. De Simone; F. Dettori; A. Falabella; F. Ferreira Rodriguez; M. Frosini; S. Furcas; E. Furfaro
The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at root s = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirements.
Journal of Instrumentation | 2013
F. Archilli; W. Baldini; G. Bencivenni; N. Bondar; W. Bonivento; S. Cadeddu; P. Campana; A. Cardini; P. Ciambrone; X. Cid Vidal; C. Deplano; P. De Simone; A. Falabella; M. Frosini; S. Furcas; E. Furfaro; M. Gandelman; J. A. Hernando Morata; G. Graziani; A. Lai; G. Lanfranchi; J. H. Lopes; O. Maev; G. Manca; G. Martellotti; A. Massafferri; D. A. Milanes; R. Oldeman; M. Palutan; G. Passaleva
The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/ψ → μ+μ−, Λ0 → pπ− and D+→π+D0(K−π+) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification probabilities are below 0.6%.
Physics in Medicine and Biology | 2014
L. Piersanti; F. Bellini; F. Bini; F. Collamati; E. De Lucia; Marco Durante; R. Faccini; F. Ferroni; S. Fiore; E. Iarocci; C. La Tessa; M. Marafini; I. Mattei; V. Patera; Pablo G. Ortega; A. Sarti; C. Schuy; A. Sciubba; Marie Vanstalle; C. Voena
The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator. The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60° and 90° with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.
Physics in Medicine and Biology | 2012
C. Agodi; G. Battistoni; F. Bellini; G.A.P. Cirrone; F. Collamati; G. Cuttone; E. De Lucia; M. De Napoli; A. Di Domenico; R. Faccini; F. Ferroni; S. Fiore; P. Gauzzi; E. Iarocci; M. Marafini; I. Mattei; S. Muraro; A. Paoloni; V. Patera; L. Piersanti; F. Romano; A. Sarti; A. Sciubba; E. Vitale; C. Voena
Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻⁴ sr⁻¹.
Journal of Instrumentation | 2012
C. Agodi; F. Bellini; G.A.P. Cirrone; F. Collamati; G. Cuttone; E. De Lucia; M. De Napoli; A. Di Domenico; R. Faccini; F. Ferroni; S. Fiore; P. Gauzzi; E. Iarocci; M. Marafini; I. Mattei; A. Paoloni; V. Patera; L. Piersanti; F. Romano; A. Sarti; A. Sciubba; C. Voena
Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments is still a matter of research. A possible technique exploits the information provided by single photon emission from nuclear decays induced by the irradiation. This paper reports the measurements of the spectrum and rate of such photons produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud of INFN, Catania, with a Poly-methyl methacrylate target. The differential production rate for photons with energy E > 2 MeV and emitted at 90° is found to be dNγ/(dNCdΩ) = (2.92±0.19) × 10−2sr−1.
The Journal of Nuclear Medicine | 2015
Francesco Collamati; Alessandra Pepe; F. Bellini; V. Bocci; Giacomo Chiodi; Marta Cremonesi; Erika De Lucia; Mahila Ferrari; Paola Maria Frallicciardi; Chiara Grana; M. Marafini; I. Mattei; Silvio Morganti; V. Patera; L. Piersanti; Luigi Recchia; Andrea Russomando; A. Sarti; A. Sciubba; Martina Senzacqua; Elena Solfaroli Camillocci; C. Voena; D. Pinci; Riccardo Faccini
A novel radioguided surgery (RGS) technique for cerebral tumors using β− radiation is being developed. Checking for a radiotracer that can deliver a β− emitter to the tumor is a fundamental step in the deployment of such a technique. This paper reports a study of the uptake of 90Y-DOTATOC in meningiomas and high-grade gliomas (HGGs) and a feasibility study of the RGS technique in these types of tumor. Estimates were performed assuming the use of a β− probe under development with a sensitive area 2.55 mm in radius to detect 0.1-mL residuals. Methods: Uptake and background from healthy tissues were estimated on 68Ga-DOTATOC PET scans of 11 meningioma patients and 12 HGG patients. A dedicated statistical analysis of the DICOM images was developed and validated. The feasibility study was performed using full simulation of emission and detection of the radiation, accounting for the measured uptake and background rate. Results: All meningioma patients but one with an atypical extracranial tumor showed high uptake of DOTATOC. In terms of feasibility of the RGS technique, we estimated that by administering a 3 MBq/kg activity of radiotracer, the time needed to detect a 0.1-mL remnant with 5% false-negative and 1% false-positive rates is less than 1 s. Actually, to achieve a detection time of 1 s the required activities to administer were as low as 0.2–0.5 MBq/kg in many patients. In HGGs, the uptake was lower than in meningiomas, but the tumor-to-nontumor ratio was higher than 4, which implies that the tracer can still be effective for RGS. It was estimated that by administering 3 mBq/kg of radiotracer, the time needed to detect a 0.1-mL remnant is less than 6 s, with the exception of the only oligodendroma in the sample. Conclusion: Uptake of 90Y-DOTATOC in meningiomas was high in all studied patients. Uptake in HGGs was significantly worse than in meningiomas but was still acceptable for RGS, particularly if further research and development are done to improve the performance of the β− probe.
Physics in Medicine and Biology | 2012
M. De Napoli; C. Agodi; G. Battistoni; A.A. Blancato; G.A.P. Cirrone; G. Cuttone; F. Giacoppo; M.C. Morone; D. Nicolosi; L. Pandola; V. Patera; G. Raciti; E Rapisarda; F. Romano; D. Sardina; A. Sarti; A. Sciubba; V. Scuderi; C Sfienti; S. Tropea
Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 62 A MeV on a thin carbon target. The experimental data have been used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before. In particular, we have compared the experimental data with the predictions of two Geant4 nuclear reaction models: the Binary Light Ions Cascade and the Quantum Molecular Dynamic. From the comparison, it has been observed that the Binary Light Ions Cascade approximates the angular distributions of the fragment production cross sections better than the Quantum Molecular Dynamic model. However, the discrepancies observed between the experimental data and the Monte Carlo simulations lead to the conclusion that the prediction capability of both models needs to be improved at intermediate energies.
Scientific Reports | 2015
E. Solfaroli Camillocci; Guido Baroni; F. Bellini; V. Bocci; F. Collamati; Marta Cremonesi; E. De Lucia; Paolo Ferroli; S. Fiore; Chiara Grana; M. Marafini; I. Mattei; S. Morganti; G. Paganelli; V. Patera; L. Piersanti; Luigi Recchia; A. Russomando; Marco Schiariti; A. Sarti; A. Sciubba; C. Voena; R. Faccini
The background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with β+-emitting radio-tracers has been suggested in literature. Here we propose the use of β−-emitting radio-tracers and β− probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective. We developed a β− probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1 ml can be reached within 1 s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.
The Journal of Nuclear Medicine | 2015
Francesco Collamati; F. Bellini; V. Bocci; Erika De Lucia; Valentina Ferri; Federica Fioroni; Elisa Grassi; Mauro Iori; M. Marafini; Silvio Morganti; R. Paramatti; V. Patera; Luigi Recchia; Andrea Russomando; A. Sarti; A. Sciubba; Martina Senzacqua; Elena Solfaroli Camillocci; Annibale Versari; C. Voena; Riccardo Faccini
A novel radioguided surgery (RGS) technique exploiting β− radiation has been proposed. To develop such a technique, a suitable radiotracer able to deliver a β− emitter to the tumor has to be identified. A first candidate is represented by 90Y-labeled DOTATOC, a compound commonly used today for peptide radioreceptor therapy. The application of this β− RGS to neuroendocrine tumors (NET) requires study of the uptake of DOTATOC and its time evolution both in tumors and in healthy organs and evaluation of the corresponding performance of the technique. Methods: Uptake by lesions and healthy organs (kidneys, spleen, liver and healthy muscle) was estimated on 177Lu-DOTATOC SPECT/CT scans of 15 patients affected by NET with different localizations, treated at IRCCS–Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. For each patient, SPECT/CT images, acquired at 0.5, 4, 20, 40, and 70 h after injection, were studied. For each lesion, the tumor-to-nontumor ratio (TNR) with respect to all healthy organs and its time evolution were studied. A subset of patients showing hepatic lesions was selected, and the TNR with respect to the nearby healthy tissue was calculated. By means of a Monte Carlo simulation of the probe for β− RGS, the activity that is to be administered for a successful detection was estimated lesion-by-lesion. Results: Uptake of DOTATOC on NETs maximized at about 24 h after injection. The cases of hepatic lesions showed a TNR with respect to the tumor margins compatible with the application of β− RGS. In particular, 0.1-mL residuals are expected to be detectable within 1 s with 5% false-negative and 1% false-positive by administering the patient as little as 1 MBq/kg. Conclusion: The balance between tumor uptake and metabolic washout in healthy tissue causes the TNR to increase with time, reaching its maximum after 24 h, and this characteristic can be exploited when a radiotracer with a long half-life, such as 90Y, is used. In particular, if 90Y-DOTATOC is used with liver NET metastases, the proposed RGS technique is believed to be feasible by injecting an activity that is one third of that commonly used for PET imaging.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2012
C. Agodi; F. Bellini; G.A.P. Cirrone; F. Collamati; G. Cuttone; E. De Lucia; M. De Napoli; A. Di Domenico; R. Faccini; F. Ferroni; S. Fiore; P. Gauzzi; E. Iarocci; M. Marafini; I. Mattei; A. Paoloni; V. Patera; L. Piersanti; F. Romano; A. Sarti; A. Sciubba; C. Voena
Abstract Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511 keV photons produced by positrons annihilation from β + emitters created by the beam. This paper reports rate measurements of the 511 keV photons emitted after the interactions of a 80 MeV / u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the β + rate was parametrized and the dominance of 11C emitters over the other species (13N, 15O, 14O) was observed, measuring the fraction of carbon ions activating β + emitters to be ( 10.3 ± 0.7 ) × 10 - 3 . The average depth in the PMMA of the positron annihilation from β + emitters was also measured, D β + = 5.3 ± 1.1 mm , to be compared to the expected Bragg peak depth D Bragg = 11.0 ± 0.5 mm obtained from simulations.