Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Schmiedeke is active.

Publication


Featured researches published by A. Schmiedeke.


The Astrophysical Journal | 2013

The CO-to-H2 Conversion Factor and Dust-to-gas Ratio on Kiloparsec Scales in Nearby Galaxies

Karin Sandstrom; Adam K. Leroy; F. Walter; Alberto D. Bolatto; K. V. Croxall; B. T. Draine; C. D. Wilson; Mark G. Wolfire; D. Calzetti; Robert C. Kennicutt; G. Aniano; J. Donovan Meyer; A. Usero; Frank Bigiel; Elias Brinks; W. J. G. de Blok; Alison F. Crocker; Daniel A. Dale; C. W. Engelbracht; M. Galametz; Brent Groves; L. K. Hunt; Jin Koda; K. Kreckel; H. Linz; Sharon E. Meidt; E. Pellegrini; Hans-Walter Rix; H. Roussel; E. Schinnerer

We present ~kiloparsec spatial resolution maps of the CO-to-H_2 conversion factor (α_(CO)) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α_(CO) and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both αCO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, ^(12)CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α_(CO) results on the more typically used ^(12)CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α_(CO) and the DGR. On average, α_(CO) = 3.1 M_☉ pc^(–2) (K km s^(–1))^(–1) for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α_(CO) as a function of galactocentric radius. However, most galaxies exhibit a lower α_(CO) value in the central kiloparsec—a factor of ~2 below the galaxy mean, on average. In some cases, the central α_(CO) value can be factors of 5-10 below the standard Milky Way (MW) value of α_(CO,MW) = 4.4 M_☉ pc^(–2) (K km s^(–1))^(–1). While for α_(CO) we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α_(CO) for studies of nearby galaxies.


Astronomy and Astrophysics | 2012

The Earliest Phases of Star Formation (EPoS): a Herschel key program - The precursors to high-mass stars and clusters

Sarah Ragan; Thomas Henning; O. Krause; J. Pitann; H. Beuther; H. Linz; J. Tackenberg; Zoltan Balog; M. Hennemann; R. Launhardt; Nils Lippok; Markus Nielbock; A. Schmiedeke; F. Schuller; Juergen Steinacker; Amelia M. Stutz; Tatiana Vasyunina

Context. Stars are born deeply embedded in molecular clouds. In the earliest embedded phases, protostars emit the bulk of their radiation in the far-infrared wavelength range, where Herschel is perfectly suited to probe at high angular resolution and dynamic range. In the high-mass regime, the birthplaces of protostars are thought to be in the high-density structures known as infrared-dark clouds (IRDCs). While massive IRDCs are believed to have the right conditions to give rise to massive stars and clusters, the evolutionary sequence of this process is not well-characterized. Aims: As part of the Earliest Phases of Star formation (EPoS) Herschel guaranteed time key program, we isolate the embedded structures within IRDCs and other cold, massive molecular clouds. We present the full sample of 45 high-mass regions which were mapped at PACS 70, 100, and 160 μm and SPIRE 250, 350, and 500 μm. In the present paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host molecular cloud and investigate their evolutionary stage. Methods: We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 μm. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. Results: The core population has a median temperature of 20 K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 μm are warmer and bluer on average than cores without a 24 μm counterpart. We conclude that cores bright at 24 μm are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 μm-dark cores. The 24 μm emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given clouds core population. We uncover over 300 further candidate cores which are dark until 100 μm. These are possibly starless objects, and further observations will help us determine the nature of these very cold cores.


Monthly Notices of the Royal Astronomical Society | 2012

The heating of dust by old stellar populations in the bulge of M31

Brent Groves; O. Krause; Karin Sandstrom; A. Schmiedeke; Adam K. Leroy; H. Linz; Maria Kapala; Hans-Walter Rix; E. Schinnerer; F. S. Tabatabaei; Fabian Walter; Elisabete da Cunha

We use new Herschel multi-band imaging of the Andromeda galaxy to analyze how dust heating occurs in the central regions of galaxy spheroids th at are essentially devoid of young stars. We construct a dust temperature map of M31 through fitt ing modified blackbody SEDs to the Herschel data, and find that the temperature within 2 kp c rises strongly from the mean value in the disk of 17± 1 K to∼ 35 K at the centre. UV to near-IR imaging of the central few kpc shows directly the absence of young stellar populations, delineates the radial profile of the stellar density, and demonstrates that even the near- UV dust extinction is optically thin in M31’s bulge. This allows the direct calculation of the ste llar radiation heating in the bulge, U∗(r), as a function of radius. The increasing temperature profil e in the centre matches that expected from the stellar heating, i.e. that the dust heatin g and cooling rates track each other over nearly two orders of magnitude in U∗. The modelled dust heating is in excess of the observed dust temperatures, suggesting that it is more than suffi cient to explain the observed IR emission. Together with the wavelength dependent absorption cross section of the dust, this demonstrates directly that it is the optical, not UV, ra diation that sets the heating rate. This analysis shows that neither young stellar populations nor stellar near-UV radiation are necessary to heat dust to warm temperatures in galaxy spheroids. Rather, it is the high densities of Gyr-old stellar populations that provide a suffi ciently strong diffuse radiation field to heat the dust. To the extent which these results pertain to the ten uous dust found in the centres of early-type galaxies remains yet to be explored.


Astronomy and Astrophysics | 2012

The Earliest Phases of Star formation (EPoS) observed with Herschel : the dust temperature and density distributions of B68

Markus Nielbock; R. Launhardt; Juergen Steinacker; Amelia M. Stutz; Zoltan Balog; H. Beuther; Jeroen Bouwman; Th. Henning; P. Hily-Blant; Jouni Kainulainen; O. Krause; H. Linz; N. Lippok; Sarah Ragan; C. Risacher; A. Schmiedeke

Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12 CO (2–1), and 13 CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36. �� 4. We find a temperature gradient dropping from (16.7 +1.3 −1.0 ) K at the edge to (8.2


Astronomy and Astrophysics | 2012

Molecular line survey of the high-mass star-forming regionNGC 6334I with Herschel/HIFI and the Submillimeter Array

A. Zernickel; P. Schilke; A. Schmiedeke; D. C. Lis; C. L. Brogan; C. Ceccarelli; C. Comito; M. Emprechtinger; Todd R. Hunter; Th. Möller

Aims. We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. Methods. In the framework of the Herschel guaranteed time key program CHESS (Chemical HErschel Surveys of Star forming regions), NGC 6334I is investigated by using the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480–1907 GHz, and further auxiliary interferometric data from the Submillimeter Array (SMA) in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines in the processed Herschel data are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum, assuming local thermal equilibrium, and best fit parameters are derived using a model optimization package. Results. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High-energy levels (E_u > 1000 K) of the dominant emitter methanol and vibrationally excited HCN (ν_2 = 1) are detected. The number of unidentified lines remains low with 75, or <2% of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO and H_(2)O emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Conclusions. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models.


Astronomy and Astrophysics | 2014

The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016

K. G. Johnston; H. Beuther; H. Linz; A. Schmiedeke; Sarah Ragan; Th. Henning

Context. The massive infrared dark cloud G0.253+0.016 projected ∼45 pc from the Galactic centre contains ∼10 5 Mof dense gas whilst being mostly devoid of observed star-formation tracers. Aims. Our goals are therefore to scrutinise the physical properties, dynamics and structure of this cloud with reference to its star- forming potential. Methods. We have carried out a concerted SMA and IRAM 30 m study of this enigmatic cloud in dust continuum, CO isotopologues, several shock tracing molecules, as well as H2CO to trace the gas temperature. In addition, we include ancillary far-IR and sub-mm Herschel and SCUBA data in our analysis. Results. We detect and characterise a total of 36 dust cores within G0.253+0.016 at 1.3 mm and 1.37 mm, with masses between 25 and approximately 250 M� , and find that the kinetic temperature of the gas traced by H2CO ratios is >320 K on size-scales of ∼0.15 pc. Analysis of the position-velocity diagrams of our observed lines shows broad linewidths and strong shock emission in the south of the cloud, indicating that G0.253+0.016 is colliding with another cloud at vLSR ∼ 70 km s −1 . We confirm via an analysis of the observed dynamics in the Central Molecular Zone that it is an elongated structure, orientated with Sgr B2 closer to the Sun than Sgr A*, however our results suggest that the actual geometry may be more complex than an elliptical ring. We find that the column density probability distribution function of G0.253+0.016 derived from SMA and SCUBA dust continuum emission is log-normal with no discernible power-law tail, consistent with little star formation, and that its width can be explained in the framework of theory predicting the density structure of clouds created by supersonic, magnetised turbulence. We also present the Δ-variance spectrum of this region, a proxy for the density power spectrum of the cloud, and show it is consistent with that expected for clouds with no current star formation. Finally, we show that even after determining a scaled column density threshold for star formation by incorporating the effects of the increased turbulence in the cloud, we would still expect ten stars with masses >15 Mto form in G0.253+0.016. If these cannot be accounted for by new radio continuum observations, then further physical aspects may be important, such as the background column density level, which would turn an absolute column density threshold for star formation into a critical over-density. Conclusions. We conclude that G0.253+0.016 contains high-temperatures and wide-spread shocks, displaying evidence of interaction with a nearby cloud which we identify at v LSR ∼ 70 km s −1 . Our analysis of the structure of the cloud can be well-explained by theory of magnetised turbulence, and is consistent with little or no current star formation. Using G0.253+0.016 as a test-bed of the conditions required for star formation in a different physical environment to that of nearby clouds, we also conclude that there is not one column density threshold for star formation, but instead this value is dependant on the local physical conditions.


Astronomy and Astrophysics | 2013

Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC 18310-4

H. Beuther; H. Linz; J. Tackenberg; Th. Henning; O. Krause; Sarah Ragan; Markus Nielbock; R. Launhardt; S. Bihr; A. Schmiedeke; Roger Smith; T. Sakai

Context. Because of their short evolutionary time-scales, the earliest stages of high-mass star formation prior to the existence of any embedded heating source have barely been characterized until today. Aims: We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods: Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100 μm wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45 m single-dish spectral line and continuum observations. Results: The massive gas reservoir (between ~800 and ~1600 M⊙, depending on the assumed dust properties) fragments at spatial scales of ~18 000 AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region <1. Conclusions: This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.


Astronomy and Astrophysics | 2012

The onset of high-mass star formation in the direct vicinity of the Galactic mini-starburst W43

H. Beuther; J. Tackenberg; Henrik Linz; Thomas Henning; O. Krause; Sarah Ragan; Markus Nielbock; R. Launhardt; A. Schmiedeke; F. Schuller; P. Carlhoff; Q. Nguyen-Luong; T. Sakai

Context. The earliest stages of high-mass star formation are still poorly characterized. Densities, temperatures and kinematics are crucial parameters for simulations of high-mass star formation. It is also unknown whether the initial conditions vary with environment. Aims: We want to investigate the youngest massive gas clumps in the environment of extremely active star formation. Methods: We selected the IRDC 18454 complex, directly associated with the W43 Galactic mini-starburst, and observed it in the continuum emission between 70 μm and 1.2 mm with Herschel, APEX and the 30 m telescope, and in spectral line emission of N2H+ and 13CO with the Nobeyama 45 m, the IRAM 30 m and the Plateau de Bute Interferometer. Results: The multi-wavelength continuum study allows us to identify clumps that are infrared dark even at 70 μm and hence the best candidates to be genuine high-mass starless gas clumps. The spectral energy distributions reveal elevated temperatures and luminosities compared to more quiescent environments. Furthermore, we identify a temperature gradient from the W43 mini-starburst toward the starless clumps. We discuss whether the radiation impact of the nearby mini-starburst changes the fragmentation properties of the gas clumps and by that maybe favors more high-mass star formation in such an environment. The spectral line data reveal two different velocity components of the gas at 100 and 50 km s-1. While chance projection is a possibility to explain these components, the projected associations of the emission sources as well as the prominent location at the Galactic bar - spiral arm interface also allow the possibility that these two components may be spatially associated and even interacting. Conclusions: High-mass starless gas clumps can exist in the close environment of very active star formation without being destroyed. The impact of the active star formation sites may even allow for more high-mass stars to form in these 2nd generation gas clumps. This particular region near the Galactic bar - spiral arm interface has a broad distribution of gas velocities, and cloud interactions may be possible.


Astronomy and Astrophysics | 2014

Kinematic structure of massive star-forming regions - I. Accretion along filaments

J. Tackenberg; H. Beuther; Th. Henning; H. Linz; Takeshi Sakai; Sarah Ragan; O. Krause; Markus Nielbock; M. Hennemann; J. Pitann; A. Schmiedeke

Context. The mid- and far-infrared view on high-mass star formation, in particular with the results from the Herschel space observatory, has shed light on many aspects of massive star formation. However, these continuum studies lack kinematic information. Aims: We study the kinematics of the molecular gas in high-mass star-forming regions. Methods: We complemented the PACS and SPIRE far-infrared data of 16 high-mass star-forming regions from the Herschel key project EPoS with N2H+ molecular line data from the MOPRA and Nobeyama 45 m telescope. Using the full N2H+ hyperfine structure, we produced column density, velocity, and linewidth maps. These were correlated with PACS 70 μm images and PACS point sources. In addition, we searched for velocity gradients. Results: For several regions, the data suggest that the linewidth on the scale of clumps is dominated by outflows or unresolved velocity gradients. IRDC 18454 and G11.11 show two velocity components along several lines of sight. We find that all regions with a diameter larger than 1 pc show either velocity gradients or fragment into independent structures with distinct velocities. The velocity profiles of three regions with a smooth gradient are consistent with gas flows along the filament, suggesting accretion flows onto the densest regions. Conclusions: We show that the kinematics of several regions have a significant and complex velocity structure. For three filaments, we suggest that gas flows toward the more massive clumps are present.


Astronomy and Astrophysics | 2013

Gas-phase CO depletion and N2H+ abundances in starless cores

N. Lippok; R. Launhardt; D. Semenov; Amelia M. Stutz; Zoltan Balog; Th. Henning; O. Krause; H. Linz; Markus Nielbock; Ya. N. Pavlyuchenkov; M. Schmalzl; A. Schmiedeke; John H. Bieging

Context. In the dense and cold interiors of starless molecular cloud cores, a number of chemical processes allow for the formation of complex molecules and the deposition of ice layers on dust grains. Dust density and temperature maps of starless cores derived from Herschel continuum observations constrain the physical structure of the cloud cores better than ever before. We use these to model the temporal chemical evolution of starless cores. Aims: We derive molecular abundance profiles for a sample of starless cores. We then analyze these using chemical modeling based on dust temperature and hydrogen density maps derived from Herschel continuum observations. Methods: We observed the

Collaboration


Dive into the A. Schmiedeke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge