Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Schoenfeld is active.

Publication


Featured researches published by A Schoenfeld.


Medical Physics | 2014

A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry

D Poppinga; A Schoenfeld; K. J. Doerner; Oliver Blanck; Dietrich Harder; B Poppe

PURPOSE The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along the x axis, the axis parallel to the elongated light source. At constant dose, the measured optical density profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. METHODS For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along the x axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. RESULTS The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at position x into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. CONCLUSIONS The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.


Physics in Medicine and Biology | 2015

Water equivalent phantom materials for ¹⁹²Ir brachytherapy.

A Schoenfeld; Dietrich Harder; Björn Poppe; Ndimofor Chofor

Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with (192)Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading (192)Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by the results of the dose simulations and the values of the linear attenuation coefficient, μ, over a large energy range, the balanced content of inorganic additives in a phantom material is regarded as the key feature, providing water equivalence with regard to the attenuation of the primary photons, the release of low-energy photons by Compton scattering, and their attenuation by a combination of the photoelectric and Compton effects.


Physics in Medicine and Biology | 2016

Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

A Schoenfeld; Soeren Wieker; Dietrich Harder; B Poppe

A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.


Medical Physics | 2013

SU‐E‐I‐87: Experimental Study of Anisotropic Light Scattering and Polarization Effects of EBT3‐Films

A Schoenfeld; D Poppinga; Dietrich Harder; B Poppe

PURPOSE Further experiments are needed to understand the underlying optical properties of flat-bed scanned EBT3-films. METHODS EBT3-films, arranged in landscape orientation and irradiated with different doses, were illuminated with a homogeneous spot of unpolarized white light. Polarizer foils could be added in front of and behind the EBT3-film. The light scattered by the film was collected by a plano-convex lens and focused onto a diffusing glass plate placed at focal length distance. Thereby, the scattering angle was transformed into an offset from the optical axis, forming a characteristic corona. This image was digitized with a DSLR-camera and the red color channel used for analysis. The effect of incident light polarization was investigated by stepwise rotating the electrical vector of a polarizer in front of the film, with 0° parallel to the preferred direction of the polymer fibres. The polarization of the scattered light was investigated by a second polarizer behind the lens. RESULTS With an unpolarized light source, anisotropic scattering is preferently propagated orthogonal to the direction of the active polymers, for both landscape and portrait orientation, and the amount of scattered light increases with dose. Scattering by the EBT3-film varies from almost zero to a maximum when the electrical vector of the light source varies from parallel to orthogonal with the direction of the active polymers. The electrical vector of the scattered light is rotated by 90° compared with the incident light. CONCLUSION By experimental separation between scattered and unscattered transmitted light it was proved that incident light polarization only affects the scattered component. This effect hints upon a role of the magnetic component in the excitation of anisotropic scattering. The effect may be utilized to enhance or suppress scattering influences in EBT-3 film dosimetry.


Physics in Medicine and Biology | 2017

Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

A Schoenfeld; Maike Thieben; Dietrich Harder; Björn Poppe; Ndimofor Chofor

In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.


Physics in Medicine and Biology | 2016

The origin of the flatbed scanner artifacts in radiochromic film dosimetry-key experiments and theoretical descriptions.

A Schoenfeld; Soeren Wieker; Dietrich Harder; B Poppe

The optical origin of the lateral response and orientation artifacts, which occur when using EBT3 and EBT-XD radiochromic films together with flatbed scanners, has been reinvestigated by experimental and theoretical means. The common feature of these artifacts is the well-known parabolic increase in the optical density OD(x)  =  -log10 I(x)/I 0(x) versus offset x from the scanner midline (Poppinga et al 2014 Med. Phys. 41 021707). This holds for landscape and portrait orientations as well as for the three color channels. Dose-independent optical subjects, such as neutral density filters, linear polarizers, the EBT polyester foil and diffusive glass, also present the parabolic lateral artifact when scanned with a flatbed scanner. The curvature parameter c of the parabola function OD(x)  =  c 0  +  cx 2 is found to be a linear function of the dose, the parameters of which are influenced by the film orientation and film type, EBT3 or EBT-XD. The ubiquitous parabolic shape of function OD(x) is attributed (a) to the optical path-length effect (van Battum et al 2016 Phys. Med. Biol. 61 625-49), due to the increasing obliquity of the optical scanner light associated with increasing offset x from the scanner midline, and (b) and (c) to the partial polarization and scattering of the light leaving the film, which affect the ratio [Formula: see text], thus making OD(x) increase with x 2. The orientation effect results from the changes of effects (b) and (c) associated with turning the film position, and thereby the orientation of the polymer structure of the sensitive film layer. In a comparison of experimental results obtained with selected optical subjects, the relative weights of the contributions of the optical path-length effect and the polarization and scattering of light leaving the films to the lateral response artifact have been estimated to be of the same order of magnitude. Mathematical models of these causes for the parabolic shape of function OD(x) are given as appendices.


Medical Physics | 2016

SU‐F‐T‐06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

Frank W. Hensley; Ndimofor Chofor; A Schoenfeld; Dietrich Harder

PURPOSE In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. METHODS After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, the energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. RESULTS The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. CONCLUSION The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.


Medical Physics | 2014

SU-E-T-176: Examination of Surface Dose Enhancement Using Radiochromic EBT3-Films in a Cylindrical Setup

T Failing; Ndimofor Chofor; D Poppinga; A Schoenfeld; K Willborn; B Poppe

PURPOSE This study was undertaken to optimize the measurement techniques with radiochromic EBT3 films to offer accurate surface dose measurements and at the same time high resolution depth dose curves of the backscattering from high Z materials. METHODS Radiochromic EBT3 films (Ashland ISP, Wayne, USA) were wrapped around a PET hollow cylinder with a diameter of 41.5 mm and fixed upon the surface of a lead block. The setup was immersed in water and exposed to a dose of 2 Gy at 6MV acceleration voltage using a Siemens Primus linear accelerator. Water reference measurements were undertaken under equal conditions. An Epson Expression 10000 XL flatbed scanner (Epson, Suwa, Japan) with a preset resolution of 72 dpi was used for digitization. RESULTS The dose enhancement could be measured with a high resolution of measurement points along the axis normal to the lead surface. A dose enhancement of 70 % was measured at a distance of 134 μm from the lead surface. The data has been compared with results presented by Das et al (Med. Phys. 16(3) (1989)) and is consistent within the uncertainty of the measurements. The results are in consistence with the results from time-tested EBT3 setups, i.e. normal-to-beam EBT3 film stacks and parallel to beam EBT3-films. CONCLUSION The cylindrical film setup offers a powerful tool for surface measurements. The advantages of a stacked film setup and a parallel to beam setup could be combined.


Medical Physics | 2014

SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

A Jansen; A Schoenfeld; D Poppinga; Ndimofor Chofor; B Poppe

PURPOSE The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. METHODS Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm3 were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. RESULTS The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. CONCLUSION The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.


Medical Physics | 2014

SU-E-T-232: Micro Diamonds - Determination of Their Lateral Response Function Via Gap-Beam Dose Profiles

D Poppinga; H Looe; N Chofor; A Schoenfeld; J Fischer; J Meyners; Björn Delfs; T Stelljes; C Verona; G Verona-Rinati; M Marinelli; Dietrich Harder; B Poppe

PURPOSE The aim of this study is the measurement of the lateral response function of microDiamonds by comparison with radiochromic film dose measurement. In this study a TM60019 microDiamond (PTW Freiburg, Germany) and a prototype synthetic diamond detector with smaller sensitive volume were investigated. METHODS Two lead blocks were positioned below the gantry head of an Elekta Synergy accelerator using a gantry mount. Between the blocks two sheets of paper were fixed. The water phantom was positioned below the gantry mount, so that the block to water distance was 20 cm. The gap beam profile was measured at 5 cm water depth by radiochromic EBT3 film and diamond detectors. The film was fixed on a RW3 plate, moved by the step motor system of the phantom and digitized by an Epson 10000XL scanner using the red color channel. RESULTS The lateral response of the prototype diamond detector is comparable to that of film measurements, i.e. has negligible width. This corresponds to the small detector volume of the prototype detector. In contrast to this the FWHM values of the gap-beam dose profiles measured with the TM60019 detector are somewhat larger, which corresponds to the larger sensitive detector volume. CONCLUSION This study has illustrated the high spatial resolution of the diamond detectors. In comparison with filmmeasured narrow-beam dose profiles, the TM60019 has a spatial resolution function of about 2 mm FWHM, whereas the FWHM for the prototype is practically negligible. However due to the low signal caused by the small sensitive volume, measurements with the prototype in clinical routine are a challenge. On the other hand the TM60019 is a good compromise between detector volume and signal output and thus a well suited detector for most clinically relevant small field situations.

Collaboration


Dive into the A Schoenfeld's collaboration.

Top Co-Authors

Avatar

B Poppe

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar

D Poppinga

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Poppe

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar

K Willborn

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar

Björn Delfs

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Looe

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar

Hui Khee Looe

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge