Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Semciw is active.

Publication


Featured researches published by A. Semciw.


Journal of Electromyography and Kinesiology | 2013

Gluteus medius: an intramuscular EMG investigation of anterior, middle and posterior segments during gait.

A. Semciw; Tania Pizzari; George S. Murley; Rodney A. Green

Previous electromyographic (EMG) studies of gluteus medius (GMed) have not accurately quantified the function of the three proposed structurally and functionally unique segments (anterior, middle and posterior). Therefore this study used anatomically verified locations for intramuscular electrode recordings in three segments of GMed to determine whether the segments are functionally independent. Bipolar fine wire electrodes were inserted into each segment of GMed in 15 healthy individuals. Participants completed a series of four walking trials, followed by maximum voluntary isometric contractions (MVICs) in five different positions. Temporal and amplitude variables for each segment were compared across the gait cycle using ANOVA. The relative contributions of each segment to the MVIC trials were compared with non-parametric tests. All segments showed a biphasic response during the stance phase of gait. There were no differences in amplitude variables (% MVIC) between segments, but the anterior segment had a later peak during both the first and second bursts.For the MVIC trials, there were significant differences in amplitude between segments in four of the five test positions. These data indicate that GMed is composed of three functionally independent segments. This study contributes to the theoretical understanding of the role of GMed.


Clinical Anatomy | 2013

Verification of a standardized method for inserting intramuscular EMG electrodes into uniquely oriented segments of gluteus minimus and gluteus medius

A. Semciw; Rodney A. Green; Tania Pizzari; Christopher Briggs

Guidelines for assessing the function of gluteus minimus and gluteus medius with electromyography (EMG) traditionally offer one electrode placement site per muscle. However, anatomical studies suggest that there are two uniquely oriented segments within gluteus minimus (anterior and posterior), and three within gluteus medius (anterior, middle, and posterior) with potential for independent function. Assessment of these muscles with one electrode may therefore provide only a limited account of their role. Thus, the aim of this cadaveric study was to verify guidelines for placing intramuscular electrodes into two uniquely oriented segments of gluteus minimus, and three segments of gluteus medius. The guidelines were developed with reference to anatomical reports, cadaveric observation and real‐time ultrasound imaging in vivo. Five cadaveric gluteal regions were marked for intramuscular electrode insertions based on these guidelines. Intramuscular electrodes were inserted into the marked regions of gluteus minimus (2×) and gluteus medius (3×) with the aid of a 15 cm biopsy needle. Systematic dissection revealed that electrodes were successfully inserted into uniquely oriented segments of gluteus minimus and medius. The orientation of fascicles surrounding each electrode was also consistent with segmental descriptions in past anatomical research. The findings of this research suggest that the guidelines described may be used to assess the functional role of segments within gluteus minimus and medius in health and dysfunction using EMG. Finally, electromyographers intent on investigating the role of posterior gluteus minimus must be cautious of the superior gluteal neurovascular bundle. Clin. Anat., 2013.


Gait & Posture | 2014

Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait.

A. Semciw; Rodney A. Green; George S. Murley; Tania Pizzari

Gluteus minimus is believed to consist of two structurally and functionally unique segments (anterior and posterior); however there is a lack of electromyography (EMG) research that attempts to verify current theoretical knowledge of this muscle. The purpose of this study was therefore to evaluate the function of gluteus minimus during gait, and to determine whether anterior and posterior segments are functionally independent. Bipolar fine wire intramuscular EMG electrodes were inserted into anterior and posterior gluteus minimus segments of fifteen healthy volunteers (9 males) according to previously verified guidelines. Participants completed a series of four walking trials, followed by maximum voluntary isometric contractions in five different positions. Temporal and amplitude variables for each segment were compared across the gait cycle with independent t-tests. The relative contribution of each segment to the maximum resisted trials was compared with Mann-Whitney U tests (α = 0.05). Anterior and posterior segments were contracting at different relative intensities for three of the five maximum resisted trials (effect size = 0.39 to 0.62, P < 0.037). The posterior segment was larger in EMG amplitude (peak and average) during the first 20% of the gait cycle (effect size = 0.96 to 1.03, P < 0.02), while the anterior segment peaked later in the stance phase (effect size = 0.83, P = 0.034). Gluteus minimus is therefore composed of functionally independent segments. These results build on contemporary theoretical knowledge and may signify hip stabilising roles for each segment across different phases of the gait cycle.


British Journal of Sports Medicine | 2016

Physical impairments in symptomatic femoroacetabular impingement: a systematic review of the evidence

Matthew Freke; Joanne L Kemp; Ida Svege; May Arna Risberg; A. Semciw; Kay M. Crossley

Background Femoroacetabular impingement (FAI) and associated pathologies are associated with pain and reduced quality of life. Physical impairments can be associated with worse symptoms and may be an important target of rehabilitation programmes in this patient group. Knowledge regarding physical impairments in people with symptomatic FAI is limited. Hypothesis In adults aged 18–50 years with symptomatic FAI: (1) to identify physical impairments in range of motion (ROM), hip muscle function and functional tasks; (2) to compare physical impairments with healthy controls; and (3) to evaluate the effects of interventions targeting physical impairments. Study design Systematic review. Methods A systematic review of the literature was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The modified Downs and Black checklist was used for quality appraisal. Studies of adults aged 18–50 years with symptomatic FAI that examined ROM, hip muscle function and functional tasks were included. Standardised mean differences were calculated where possible or best evidence synthesis and study conclusions were presented. Results Twenty-two studies fulfilled all inclusion criteria. Methodological quality was varied. Results for hip joint ROM differences between people with symptomatic FAI compared and control subjects were varied. People with symptomatic FAI demonstrated some deficits in hip muscle strength and reduced balance on one leg when compared with control subjects. For hip joint ROM and hip muscle strength results for within-group differences between preintervention and postintervention time points were limited and inconclusive. No randomised controlled trials evaluated the effect of different types of interventions for symptomatic patients with symptomatic FAI. Conclusions People with symptomatic FAI demonstrate impairments in some hip muscle strength and single leg balance. This information may assist therapists in providing targeted rehabilitation programmes for people with FAI and associated pathology. Further research is needed to determine whether symptomatic FAI affects other aspects of functional performance; and to evaluate whether targeted interventions are effective in symptomatic FAI. Clinical relevance This information may assist therapists in providing targeted rehabilitation programmes for people with symptomatic FAI.


Gait & Posture | 2013

Technical application and the level of discomfort associated with an intramuscular electromyographic investigation into gluteus minimus and gluteus medius

A. Semciw; Tania Pizzari; Rodney A. Green

Our current theoretical understanding of gluteus minimus (GMin) and gluteus medius (GMed) function is primarily based on cadaveric studies and biomechanical modelling. There is an absence of electromyographic (EMG) research that aims to verify this understanding, particularly in relation to the potentially unique functional roles of structurally distinct segments within GMin (anterior and posterior) and GMed (anterior, middle and posterior). The aim of this paper is to provide a comprehensive technical description for inserting intramuscular EMG electrodes into uniquely oriented segments of GMin and GMed; and to report the levels of discomfort associated with gluteal intramuscular electrode insertions. Fifteen healthy volunteers took part in a series of walking trials after intramuscular EMG electrodes were inserted into segments of GMin (×2) and GMed (×3) according to previously verified guidelines. Visual analogue scores following walking trials at comfortable and fast speed indicate that discomfort levels associated with these insertions were low (2.4±1.4 and 1.6±0.7 respectively). The technical descriptions and illustrations provided in this paper will allow trained intramuscular electromyographers to insert electrodes into these muscle segments with confidence.


Journal of Electromyography and Kinesiology | 2014

A comparison of surface and fine wire EMG recordings of gluteus medius during selected maximum isometric voluntary contractions of the hip

A. Semciw; Rachel Neate; Tania Pizzari

Electromyographic (EMG) studies into gluteus medius (GMed) typically involve surface EMG electrodes. Previous comparisons of surface and fine wire electrode recordings in other muscles during high load isometric tasks suggest that recordings between electrodes are comparable when the muscle is contracting at a high intensity, however, surface electrodes record additional activity when the muscle is contracting at a low intensity. The purpose of this study was to compare surface and fine wire recordings of GMed at high and low intensities of muscle contractions, under high load conditions (maximum voluntary isometric contractions, MVICs). Mann-Whitney U tests compared median electrode recordings during three MVIC hip actions; abduction, internal rotation and external rotation, in nine healthy adults. There were no significant differences between electrode recordings in positions that evoked a high intensity contraction (internal rotation and abduction, fine wire activity >77% MVIC; effect size, ES<0.42; p>0.277). During external rotation, the intensity of muscle activity was low (4.2% MVIC), and surface electrodes recorded additional myoelectric activity (ES=0.67, p=0.002). At low levels of muscle activity during high load isometric tasks, the use of surface electrodes may result in additional myoelectric recordings of GMed, potentially reflective of cross-talk from surrounding muscles.


Journal of Orthopaedic & Sports Physical Therapy | 2016

Hip Strength Deficits in People With Symptomatic Knee Osteoarthritis: A Systematic Review With Meta-analysis

Margaret Deasy; Edmund Leahy; A. Semciw

Study Design Systematic review with meta-analysis. Background A complete understanding of impairments associated with knee osteoarthritis would optimize exercise interventions for people with knee osteoarthritis. Our current understanding of hip strength deficits in this population is based on studies with conflicting findings and small samples. There is a need to systematically review and pool current evidence. Objectives To determine whether hip strength deficits exist in people with symptomatic knee osteoarthritis. Methods Electronic databases (MEDLINE, CINAHL, Embase, the Cochrane Library, and PsycINFO) were searched through February 2016. Studies comparing hip strength in people diagnosed with symptomatic knee osteoarthritis to healthy control participants were included in the review. A meta-analysis with random effects was applied to relevant data from included studies and a modified Grading of Recommendations Assessment, Development and Evaluation approach was used to evaluate the quality of evidence for each pooled analysis. Results Five studies were included in the review. Meta-analysis revealed moderate-quality evidence of weaker isometric and isokinetic hip abduction strength in people with knee osteoarthritis (moderate difference: 7% to 24% weaker) and very low-quality evidence of no difference in isometric hip adduction strength. There was very low- to moderate-quality evidence of weaker isokinetic hip strength in the remaining planes of motion (moderate to large differences: 14% to 55% weaker). Conclusion Significant hip strength deficits exist in people with knee osteoarthritis. Hip strength assessment should be considered in clinical practice and may assist with directing targeted management strategies. Level of Evidence Symptom prevalence, level 1a-. J Orthop Sports PhysTher 2016;46(8):629-639. Epub3 Jul 2016. doi:10.2519/jospt.2016.6618.


Journal of Biomechanics | 2015

Quadratus femoris: An EMG investigation during walking and running

A. Semciw; Michael Freeman; Breanne E. Kunstler; M. Dilani Mendis; Tania Pizzari

Dysfunction of hip stabilizing muscles such as quadratus femoris (QF) is identified as a potential source of lower extremity injury during functional tasks like running. Despite these assumptions, there are currently no electromyography (EMG) data that establish the burst activity profile of QF during any functional task like walking or running. The objectives of this study were to characterize and compare the EMG activity profile of QF while walking and running (primary aim) and describe the direction specific action of QF (secondary aim). A bipolar fine-wire intramuscular electrode was inserted via ultrasound guidance into the QF of 10 healthy participants (4 females). Ensemble curves were generated from four walking and running trials, and normalized to maximum voluntary isometric contractions (MVICs). Paired t-tests compared the temporal and amplitude EMG variables. The relative activity of QF in the MVICs was calculated. The QF displayed moderate to high amplitude activity in the stance phase of walking and very high activity during stance in running. During swing, there was minimal QF activity recorded during walking and high amplitudes were present while running (run vs walk effect size=4.23, P<0.001). For the MVICs, external rotation and clam produced the greatest QF activity, with the hip in the anatomical position. This study provides an understanding of the activity demands placed on QF while walking and running. The high activity in late swing during running may signify a synergistic role with other posterior thigh muscles to control deceleration of the limb in preparation for stance.


Journal of Womens Health | 2017

Demystifying the clinical diagnosis of greater trochanteric pain syndrome in women

Charlotte Ganderton; A. Semciw; Jill Cook; Tania Pizzari

OBJECTIVE To evaluate the diagnostic accuracy of 10 clinical tests that can be used in the diagnosis of greater trochanteric pain syndrome (GTPS) in women, and to compare these clinical tests to magnetic resonance imaging (MRI) findings. MATERIALS AND METHODS Twenty-eight participants with GTPS (49.5 ± 22.0 years) and 18 asymptomatic participants (mean age ± standard deviation [SD], 52.5 ± 22.8 years) were included. A blinded physiotherapist performed 10 pain provocation tests potentially diagnostic for GTPS-palpation of the greater trochanter, resisted external derotation test, modified resisted external derotation test, standard and modified Obers tests, Patricks or FABER test, resisted hip abduction, single-leg stance test, and the resisted hip internal rotation test. A sample of 16 symptomatic and 17 asymptomatic women undertook a hip MRI scan. Gluteal tendons were evaluated and categorized as no pathology, mild tendinosis, moderate tendinosis/partial tear, or full-thickness tear. RESULTS Clinical test analyses show high specificity, high positive predictive value, low to moderate sensitivity, and negative predictive value for most clinical tests. All symptomatic and 88% of asymptomatic participants had pathological gluteal tendon changes on MRI, from mild tendinosis to full-thickness tear. CONCLUSIONS The study found the Patricks or FABER test, palpation of the greater trochanter, resisted hip abduction, and the resisted external derotation test to have the highest diagnostic test accuracy for GTPS. Tendon pathology on MRI is seen in both symptomatic and asymptomatic women.


Journal of Electromyography and Kinesiology | 2017

A comparison of gluteus medius, gluteus minimus and tensor facia latae muscle activation during gait in post-menopausal women with and without greater trochanteric pain syndrome

Charlotte Ganderton; Tania Pizzari; Tanya Harle; Jill Cook; A. Semciw

The effect of greater trochanteric pain syndrome (GTPS) on gluteus medius (GMed) and minimus (GMin) activation in post-menopausal women is unknown. The aim of this study was to compare segmental muscle activation and variability of the GMed, GMin and tensor fascia latae (TFL) during gait in post-menopausal women with and without GTPS. Intramuscular electrodes were inserted into segments of GMin (x2) and GMed (x3) and a surface electrode placed on TFL. Ten control participants and 8 with GTPS completed six walking trials. Peak amplitude, average amplitude and time to peak from each phase of the gait cycle (0-30%, 30%- toe off (TO), total stance and swing) were compared between groups using independent t-tests and effect-size (ES) calculations. Variability of muscle activation was calculated using the mean coefficient of variation (CV). Reversal of anterior GMin electromyographic burst pattern and greater average muscle activity was found in the GTPS group compared to controls: 0-TO for anterior GMin (p<0.05), anterior and middle GMed (p<0.01); 0-30% for posterior GMin (p<0.01) and GMed (p<0.05). No significant differences were identified in TFL. Overall, this study found increased segmental gluteal muscle activation, decreased hip abduction strength, and reduced variability in muscle activation in post-menopausal women with GTPS, compared with controls.

Collaboration


Dive into the A. Semciw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Freke

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge