Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Shoup is active.

Publication


Featured researches published by A. Shoup.


The Astrophysical Journal | 2007

TeV gamma-ray sources from a survey of the Galactic plane with Milagro

A. A. Abdo; B. Allen; D. Berley; S. Casanova; C. Chen; D. G. Coyne; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma-Ray Observatory. Eight candidate sources of TeV emission are detected with pretrial significances >4.5 σ in the region of Galactic longitude l [30°, 220°] and latitude b [-10°, 10°]. Four of these sources, including the Crab Nebula and the recently published MGRO J2019+37, are observed with significances >4 σ after accounting for the trials. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources, and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.


The Astrophysical Journal | 2009

The Large-Scale Cosmic-Ray Anisotropy as Observed with Milagro

A. A. Abdo; B. Allen; T. Aune; D. Berley; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) ×10–3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.


The Astrophysical Journal | 2007

Discovery of TeV gamma-ray emission from the Cygnus region of the galaxy

A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; C. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; I. Gebauer; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; L. A. Kelley; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; P. M. Saz Parkinson; M. Schneider

The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.


Physical Review Letters | 2008

Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.


The Astrophysical Journal | 2009

MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST

A. A. Abdo; B. T. Allen; T. Aune; D. Berley; C. Chen; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; J. Linnemann; J. E. McEnery; T. Morgan; Allen Mincer; P. Nemethy; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou; G. P. Walker; D. A. Williams; G. Yodh

We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.


The Astrophysical Journal | 2008

A MEASUREMENT OF THE SPATIAL DISTRIBUTION OF DIFFUSE TeV GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH MILAGRO

Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; T. A. Porter; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith

Diffuse � -ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the northern hemisphere sky and for detecting diffuse � -ray emission at very high energies. Here the spatial distributionand thefluxof thediffuse � -rayemission inthe TeVenergyrange withamedian energyof 15TeV for Galactic longitude between 30 � and 110 � and between 136 � and 216 � and for Galactic latitude between � 10 � and 10 � aredetermined.Themeasuredfluxesareconsistentwithpredictionsof theGALPROPmodeleverywhere,except for the Cygnus region (l 2½ 65 � ;85 � � ). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic-ray sources accelerating hadrons, which interact with the local dense interstellar medium and produce gamma rays through pion decay. Subject headingg gamma rays: observations


The Astrophysical Journal | 2012

Spectrum and morphology of the two brightest Milagro sources in the Cygnus region: MGRO J2019+37 and MGRO J2031+41

A. A. Abdo; U. Abeysekara; B. T. Allen; T. Aune; D. Berley; E. Bonamente; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; J. Galbraith-Frew; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; C. M. Hui; B. E. Kolterman; J. Linnemann; J. E. McEnery; Allen Mincer; T. Morgan; P. Nemethy; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou; G. P. Walker

The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1–100 TeV using the last three years of Milagro data (2005–2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7 +52 × 10 −10 s −1 m −2 TeV −1 , a spectral index of 2.0 +0.5 −1.0, and a cutoff energy of 29 +5016 TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1 +0.6 −0.6 × 10 −10 s −1 m −2 TeV −1 and a spectral index of 3.22 +0.23 −0.18 . The overall flux is subject to a ∼30% systematic uncertainty. The systematic uncertainty on the power-law indices is ∼0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.


The Astrophysical Journal | 2007

Milagro Constraints on Very High Energy Emission from Short-Duration Gamma-Ray Bursts

A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou; G. P. Walker; D. A. Williams; X. W. Xu; G. Yodh

Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led to the observation of the first afterglows and the measurement of the first redshifts from this type of burst (Fox et al. 2005; Gehrels et al. 2005; Villasenor et al. 2005; Berger et al. 2005; Barthelmy et al. 2005). Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Seventeen short-duration ( 100 GeV counterparts to these GRBs and find no significant emission correlated with these bursts. Due to the absorption of high-energy gamma rays by the extragalactic background light (EBL), detections are only expected for redshifts less than ~0.5. While most long-duration GRBs occur at redshifts higher than 0.5, the opposite is thought to be true of short GRBs. Lack of a detected VHE signal thus allows setting meaningful fluence limits. One GRB in the sample (050509b) has a likely association with a galaxy at a redshift of 0.225, while another (051103) has been tentatively linked to the nearby galaxy M81. Fluence limits are corrected for EBL absorption, either using the known measured redshift, or computing the corresponding absorption for a redshift of 0.1 and 0.5, as well as for the case of z = 0.


The Astrophysical Journal | 2012

CONSTRAINTS ON THE EMISSION MODEL OF THE 'NAKED-EYE BURST' GRB 080319B

A. A. Abdo; A. U. Abeysekara; B. T. Allen; T. Aune; D. Berley; C. Chen; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; Jonathan Granot; E. Hays; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; J. Linnemann; J. E. McEnery; Allen Mincer; T. Morgan; P. Nemethy; J. Pretz; Enrico Ramirez-Ruiz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou

On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several groundand space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the “naked-eye” GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47 ◦ . Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from ∼ 5G eV to>20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between ∼25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV–16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft (∼650 keV) gamma rays may not be produced by the same electron population.


The Astrophysical Journal | 2009

ERRATUM: “MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST” (2009, ApJ, 700, L127)

A. A. Abdo; Branden Thomas Allen; T. Aune; D. Berley; C. Chen; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; J. Linnemann; J. E. McEnery; T. Morgan; Allen Mincer; P. Nemethy; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou; G. P. Walker; D. A. Williams; G. Yodh

The position of the peak of the Milagro excess coincident with 0FGL J2229.0+6114 was incorrectly reported as R.A. = 22h28m17s, decl. = 60°29m. The correct position is R.A. = 22h28m44s, decl. = 61°10m with a statistical position error of 0165.

Collaboration


Dive into the A. Shoup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. L. Dingus

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. M. Hoffman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. E. McEnery

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. Ryan

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Sinnis

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. A. Abdo

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge