Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Sinyuk is active.

Publication


Featured researches published by A. Sinyuk.


Journal of the Atmospheric Sciences | 2002

A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements

Omar Torres; Pawan K. Bhartia; Jay R. Herman; A. Sinyuk; Paul Ginoux; Brent N. Holben

Observations of backscattered near-ultraviolet radiation from the Total Ozone Mapping Spectrometer (TOMS) on board the Nimbus-7 (1979‐92) and the Earth Probe (mid-1996 to present) satellites have been used to derive a long-term record of aerosol optical depth over oceans and continents. The retrieval technique applied to the TOMS data makes use of two unique advantages of near-UV remote sensing not available in the visible or nearIR: 1) low reflectivity of all land surface types (including the normally bright deserts in the visible), which makes possible aerosol retrieval over the continents; and 2) large sensitivity to aerosol types that absorb in the UV, allowing the clear separation of carbonaceous and mineral aerosols from purely scattering particles such as sulfate and sea salt aerosols. The near-UV method of aerosol characterization is validated by comparison with Aerosol Robotic Network (AERONET) ground-based observations. TOMS retrievals of aerosol optical depth over land areas (1996‐2000) are shown to agree reasonably well with AERONET sun photometer observations for a variety of environments characterized by different aerosol types, such as carbonaceous aerosols from biomass burning, desert dust aerosols, and sulfate aerosols. In most cases the TOMS-derived optical depths of UV-absorbing aerosols are within 30% of the AERONET observations, while nonabsorbing optical depths agree to within 20%. The results presented here constitute the first long-term nearly global climatology of aerosol optical depth over both land and water surfaces, extending the observations of aerosol optical depth to regions and times (1979 to present) not accessible to ground-based observations.


Journal of Geophysical Research | 2014

Intercomparison of aerosol single‐scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON‐MD and DISCOVER‐AQ experiments

J. S. Schafer; T. F. Eck; Brent N. Holben; K. L. Thornhill; Bruce E. Anderson; A. Sinyuk; David M. Giles; Edward L. Winstead; Luke D. Ziemba; A. J. Beyersdorf; P. R. Kenny; A. Smirnov; I. Slutsker

Single-scattering albedo (SSA) retrievals obtained with CIMEL Sun-sky radiometers from the Aerosol Robotic Network (AERONET) aerosol monitoring network were used to make comparisons with simultaneous in situ sampling from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team in the summer of 2011 during the coincident DRAGON-MD (Distributed Regional Aerosol Gridded Observational Network-Maryland) and DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. The single-scattering albedos (interpolated to 550 nm) derived from AERONET measurements for aerosol optical depth (AOD) at 440 nm ≥ 0.4 (mean SSA: 0.979) were on average 0.011 lower than the values derived from the LARGE profile measurements (mean SSA: 0.99). The maximum difference observed was 0.023 with all the observed differences within the combined uncertainty for the stated SSA accuracy (0.03 for AERONET; 0.02 for LARGE). Single-scattering albedo averages were also analyzed for lower aerosol loading conditions (AOD ≥ 0.2) and a dependence on aerosol optical depth was noted with significantly lower single-scattering albedos observed for lower AOD in both AERONET and LARGE data sets. Various explanations for the SSA trend were explored based on other retrieval products including volume median radius and imaginary refractive index as well as column water vapor measurements. Additionally, these SSA trends with AOD were evaluated for one of the DRAGON-MD study sites, Goddard Space Flight Center, and two other Mid-Atlantic AERONET sites over the long-term record dating to 1999.


Journal of Geophysical Research | 2016

Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET

Pradeep Khatri; Tamio Takamura; Teruyuki Nakajima; V. Estellés; Hitoshi Irie; Hiroaki Kuze; M. Campanelli; A. Sinyuk; Sang-Moo Lee; Byung-Ju Sohn; G. Pandithurai; Sumi Kim; Soon Chang Yoon; J.A. Martínez-Lozano; M. Hashimoto; P.C.S. Devara; Naohiro Manago

SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). The disk scan method (scan area: 1° × 1° area of solar disk) of SKYNET is noted to produce stable wavelength-dependent ΔΩ values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.


Polarization: Measurement, Analysis, and Remote Sensing XII | 2016

A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

Sergey Korkin; Alexei Lyapustin; A. Sinyuk; Brent N. Holben

We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip


Journal of Geophysical Research | 2018

Observations of the Interaction and Transport of Fine Mode Aerosols With Cloud and/or Fog in Northeast Asia From Aerosol Robotic Network and Satellite Remote Sensing

T. F. Eck; Brent N. Holben; Jeffrey S. Reid; Peng Xian; David M. Giles; A. Sinyuk; A. Smirnov; J. S. Schafer; I. Slutsker; Ju-Hye Kim; J.‐H. Koo; M. Choi; K. C. Kim; Itaru Sano; Antti Arola; A. M. Sayer; Robert C. Levy; L. A. Munchak; N. T. O'Neill; Alexei Lyapustin; N. C. Hsu; C. A. Randles; A. da Silva; Virginie Buchard; R. C. Govindaraju; E. J. Hyer; J. H. Crawford; P. Wang; Xugui Xia

Analysis of sun photometer measured and satellite retrieved aerosol optical depth (AOD) data has shown that major aerosol pollution events with very high fine mode AOD (>1.0 in mid-visible) in the China/Korea/Japan region are often observed to be associated with significant cloud cover. This makes remote sensing of these events difficult even for high temporal resolution sun photometer measurements. Possible physical mechanisms for these events that have high AOD include a combination of aerosol humidification, cloud processing, and meteorological co-variation with atmospheric stability and convergence. The new development of Aerosol Robotic network (AERONET) Version 3 Level 2 AOD with improved cloud screening algorithms now allow for unprecedented ability to monitor these extreme fine mode pollution events. Further, the Spectral Deconvolution Algorithm (SDA) applied to Level 1 data (L1; no cloud screening) provides an even more comprehensive assessment of fine mode AOD than L2 in current and previous data versions. Studying the 2012 winter-summer period, comparisons of AERONET L1 SDA daily average fine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing of AOD often did not retrieve and/or identify some of the highest fine mode AOD events in this region. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDA fine mode AOD was significantly higher in magnitude, particularly for the highest AOD events that were often associated with significant cloudiness.


Remote Sensing of Clouds and the Atmosphere XXI | 2016

Accuracy of RT code SORD for realistic atmospheric profiles

Sergey Korkin; Alexei Lyapustin; A. Sinyuk; Brent N. Holben

We discuss accuracy of our recently developed RT code SORD using 2 benchmark scenarios published by the IPRT group in 2015. These scenarios define atmospheres with a complicate dependence of scattering and absorption properties over height (profile). Equal step, dh=1km, is assumed in the profiles. We developed subroutines that split such atmospheres into layers of the same optical thickness, dτ. We provide full text of the subroutines with comments in Appendix. The dτ is a step for vertical integration in the method of successive orders. Modification of the input profiles from “equal step over h” to “equal step over τ” changes input for RT simulations. This may cause errors at or above the acceptable level of the measurement uncertainty. We show errors of the RT code SORD for both intensity and polarization. In addition to that, using our discrete ordinates RT code IPOL, we discuss one more IPRT scenario, in which changes in height profile indeed cause unacceptable errors. Clear understanding of source and magnitude of these errors is important, e.g. for the AERONET retrieval algorithm.


ieee international conference on high performance computing data and analytics | 2016

Performance of the dot product function in radiative transfer code SORD

Sergey Korkin; Alexei Lyapustin; A. Sinyuk; Brent N. Holben

The successive orders of scattering radiative transfer (RT) codes frequently call the scalar (dot) product function. In this paper, we study performance of some implementations of the dot product in the RT code SORD using 50 scenarios for light scattering in the atmosphere-surface system. In the dot product function, we use the unrolled loops technique with different unrolling factor. We also considered the intrinsic Fortran functions. We show results for two machines: ifort compiler under Windows, and pgf90 under Linux. Intrinsic DOT_PRODUCT function showed best performance for the ifort. For the pgf90, the dot product implemented with unrolling factor 4 was the fastest. The RT code SORD together with the interface that runs all the mentioned tests are publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B (current release) or by email request from the corresponding (first) author.


Atmospheric Measurement Techniques | 2010

Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

Oleg Dubovik; Mary M. Herman; A. Holdak; T. Lapyonok; D. Tanré; Jean Luc Deuze; F. Ducos; A. Sinyuk; Anton Lopatin


Annales Geophysicae | 2009

Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

Mian Chin; Thomas Diehl; Oleg Dubovik; T. F. Eck; Brent N. Holben; A. Sinyuk; David G. Streets


Journal of Geophysical Research | 2008

Spatial and temporal variability of column‐integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer

T. F. Eck; Brent N. Holben; Jeffrey S. Reid; A. Sinyuk; Oleg Dubovik; Alexander Smirnov; David M. Giles; Norman T. O'Neill; Si-Chee Tsay; Qiang Ji; A. Al Mandoos; M. Ramzan Khan; Elizabeth A. Reid; J. S. Schafer; M. Sorokine; W. W. Newcomb; I. Slutsker

Collaboration


Dive into the A. Sinyuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. Schafer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David M. Giles

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

T. F. Eck

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

A. Smirnov

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

I. Slutsker

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Reid

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexei Lyapustin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Mian Chin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Sergey Korkin

Universities Space Research Association

View shared research outputs
Researchain Logo
Decentralizing Knowledge