Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Sozzetti is active.

Publication


Featured researches published by A. Sozzetti.


The Astrophysical Journal | 2004

TrES-1: The Transiting Planet of a Bright K0 V Star

Roi Alonso; Timothy M. Brown; Guillermo Torres; David W. Latham; A. Sozzetti; Georgi Mandushev; Juan Antonio Belmonte; David Charbonneau; Hans J. Deeg; Edward W. Dunham; Francis T. O'Donovan; Robert P. Stefanik

We report the detection of a transiting Jupiter-sized planet orbiting a relatively bright (V = 11.79) K0 V star. We detected the transit light-curve signature in the course of the TrES multisite transiting planet survey and confirmed the planetary nature of the companion via multicolor photometry and precise radial velocity measurements. We designate the planet TrES-1; its inferred mass is MJup, its radius is 1.08RJup, and its orbital period is 3.030065 ? 0.000008 days. This planet has an orbital period similar to that of HD 209458b but about twice as long as those of the OGLE transiting planets. Its mass is indistinguishable from that of HD 209458b, but its radius is significantly smaller and fits the theoretical models without the need for an additional source of heat deep in the atmosphere, as has been invoked by some investigators for HD 209458b.


Proceedings of SPIE | 2014

Transiting Exoplanet Survey Satellite (TESS)

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


Journal of Astronomical Telescopes, Instruments, and Systems | 2014

Transiting Exoplanet Survey Satellite

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 2012

Improved spectroscopic parameters for transiting planet hosts

Guillermo Torres; Debra A. Fischer; A. Sozzetti; Lars A. Buchhave; Joshua N. Winn; Matthew J. Holman; Joshua A. Carter

We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the Stellar Parameter Classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (SME and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between Teff, [Fe/H], and logg when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on logg based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius. Subject headings: planetary systems — stars: abundances — stars: fundamental parameters — techniques: spectroscopic


Nature | 2013

An Earth-sized planet with an Earth-like density

F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; A. S. Bonomo; Lars A. Buchhave; David Charbonneau; Rosario Cosentino; Courtney D. Dressing; X. Dumusque; P. Figueira; Aldo F. M. Fiorenzano; S. Gettel; A. Harutyunyan; R. D. Haywood; K. Horne; Mercedes Lopez-Morales; Christophe Lovis; Luca Malavolta; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice; Dimitar D. Sasselov

Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth’s () are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42) and Kepler-36b (1.49), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm−3, which is similar to that of the Earth and implies a composition of iron and rock.


The Astrophysical Journal | 2014

THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET*

X. Dumusque; A. S. Bonomo; R. D. Haywood; Luca Malavolta; D. Ségransan; Lars A. Buchhave; Andrew Collier Cameron; David W. Latham; Emilio Molinari; F. Pepe; S. Udry; David Charbonneau; Rosario Cosentino; Courtney D. Dressing; P. Figueira; Aldo F. M. Fiorenzano; S. Gettel; A. Harutyunyan; K. Horne; Mercedes Lopez-Morales; Christophe Lovis; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficienttoconstrainmodelsofitsinternalstructureandcompositionindetail.InadditiontoKepler-10b,asecond planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47 +0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm −3 , very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35 +0.09


The Astrophysical Journal | 2015

THE MASS OF KEPLER-93B AND THE COMPOSITION OF TERRESTRIAL PLANETS *

Courtney D. Dressing; David Charbonneau; X. Dumusque; S. Gettel; F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; L. Affer; A. S. Bonomo; Lars A. Buchhave; Rosario Cosentino; P. Figueira; Aldo F. M. Fiorenzano; A. Harutyunyan; R. D. Haywood; John Asher Johnson; Mercedes Lopez-Morales; Christophe Lovis; Luca Malavolta; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice

Kepler-93b is a 1.478 ± 0.019 R⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 Mand a radius of 0.919 ± 0.011 R� . Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M⊕. The corresponding high density of 6.88 ± 1.18 g cm −3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 M⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M⊕ planets.


Astronomy and Astrophysics | 2012

Gaia Universe model snapshot - A statistical analysis of the expected contents of the Gaia catalogue

A. C. Robin; X. Luri; C. Reylé; Y. Isasi; E. Grux; S. Blanco-Cuaresma; F. Arenou; C. Babusiaux; M. Belcheva; R. Drimmel; C. Jordi; A. Krone-Martins; E. Masana; J. C. Mauduit; F. Mignard; Nami Mowlavi; Brigitte Rocca-Volmerange; P. Sartoretti; Eric Slezak; A. Sozzetti

Context. This study has been developed in the framework of the computational simulations that are executed for the preparation of the ESA Gaia astrometric mission. Aims. We focus on describing the objects and characteristics that Gaia will potentially observe without taking into consideration instrumental effects (detection efficiency, observing errors). Methods. The theoretical Universe model prepared for the Gaia simulation has been statistically analysed at a given time. Ingredients of the model are described, with the greatest emplasis on the stellar content, the double and multiple stars, and variability. Results. In this simulation the errors have not yet been included. Hence we estimated the number of objects and their theoretical photometric, astrometric and spectroscopic characteristics if they are perfectly detected. We show that Gaia will be able to potentially observe 1.1 billion of stars (single or part of multiple star systems) of which about 2% are variable stars and 3% have one or two exoplanets. At the extragalactic level, observations will be potentially composed of several millions of galaxies, half a million to 1 million quasars and about 50 000 supernovae that will occur during the five years of the mission.


The Astrophysical Journal | 2015

An Ancient Extrasolar System with Five Sub-Earth-size Planets

T. L. Campante; Jonathan J. Swift; D. Huber; V. Zh-H. Adibekyan; William D. Cochran; Christopher J. Burke; Howard Isaacson; Elisa V. Quintana; G. R. Davies; V. Silva Aguirre; Darin Ragozzine; Reed Riddle; Christoph Baranec; Sarbani Basu; W. J. Chaplin; J. Christensen-Dalsgaard; T. S. Metcalfe; Timothy R. Bedding; R. Handberg; D. Stello; John M. Brewer; S. Hekker; C. Karoff; Rea Kolbl; Nicholas M. Law; M. Lundkvist; A. Miglio; Jason F. Rowe; N. C. Santos; C. Van Laerhoven

The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universes history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universes 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.


Proceedings of SPIE | 2012

Harps-N: the new planet hunter at TNG

Rosario Cosentino; Christophe Lovis; F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; Naidu Bezawada; Martin Black; Andy Born; Nicolas Buchschacher; D. Charbonneau; P. Figueira; Michel Fleury; Alberto Galli; Angus Gallie; Xiaofeng Gao; Adriano Ghedina; Carlos Gonzalez; Manuel Gonzalez; J. Guerra; David Henry; K. Horne; Ian Hughes; Dennis Kelly; Marcello Lodi; David Lunney; Charles Maire; Michel Mayor; Giusi Micela

The Telescopio Nazionale Galileo (TNG)[9] hosts, starting in April 2012, the visible spectrograph HARPS-N. It is based on the design of its predecessor working at ESOs 3.6m telescope, achieving unprecedented results on radial velocity measurements of extrasolar planetary systems. The spectrographs ultra-stable environment, in a temperature-controlled vacuum chamber, will allow measurements under 1 m/s which will enable the characterization of rocky, Earth-like planets. Enhancements from the original HARPS include better scrambling using octagonal section fibers with a shorter length, as well as a native tip-tilt system to increase image sharpness, and an integrated pipeline providing a complete set of parameters. Observations in the Kepler field will be the main goal of HARPS-N, and a substantial fraction of TNG observing time will be devoted to this follow-up. The operation process of the observatory has been updated, from scheduling constraints to telescope control system. Here we describe the entire instrument, along with the results from the first technical commissioning.

Collaboration


Dive into the A. Sozzetti's collaboration.

Researchain Logo
Decentralizing Knowledge