Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Suter is active.

Publication


Featured researches published by A. Suter.


Science | 2011

Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

A. V. Boris; Y. Matiks; E. Benckiser; A. Frano; P. Popovich; V. Hinkov; P. Wochner; M. Castro-Colin; E. Detemple; Vivek Kumar Malik; C. Bernhard; T. Prokscha; A. Suter; Zaher Salman; E. Morenzoni; G. Cristiani; H.-U. Habermeier; B. Keimer

The structure of metal-oxide superlattices is used to control the electronic order of the system. The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal lanthanum nickelate (LaNiO3) and the wide-gap insulator lanthanum aluminate (LaAlO3) with atomically precise layer sequences. We used optical ellipsometry and low-energy muon spin rotation to show that superlattices with LaNiO3 as thin as two unit cells undergo a sequence of collective metal-insulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems.


Nature Materials | 2011

Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer

Leander Schulz; Laura Nuccio; M. Willis; P. Desai; P. Shakya; T. Kreouzis; Vivek Kumar Malik; C. Bernhard; Francis L. Pratt; N. A. Morley; A. Suter; G. J. Nieuwenhuys; T. Prokscha; E. Morenzoni; W. P. Gillin; Alan J. Drew

Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.


Scientific Reports | 2015

Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study

Thomas Tietze; Patrick Audehm; Yu–Chun Chen; Gisela Schütz; Boris B. Straumal; S. G. Protasova; A.A. Mazilkin; P. B. Straumal; T. Prokscha; H. Luetkens; Zaher Salman; A. Suter; B. Baretzky; Karin Fink; Wolfgang Wenzel; Denis Danilov; E. Goering

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non–magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.


Physical Review Letters | 2004

Direct Observation of the Oxygen Isotope Effect on the In-Plane Magnetic Field Penetration Depth in Optimally Doped YBa~2Cu~3O~7~-~d~e~l~t~a

R. Khasanov; D. G. Eshchenko; H. Luetkens; E. Morenzoni; T. Prokscha; A. Suter; N. Garifianov; M. Mali; J. Roos; K. Conder; H. Keller

We report the first direct observation of the oxygen-isotope ((16)O/(18)O) effect on the in-plane penetration depth lambda(ab) in a nearly optimally doped YBa(2)Cu(3)O(7-delta) film using the novel low-energy muon-spin rotation technique. Spin-polarized low-energy muons are implanted in the film at a known depth z beneath the surface and process in the local magnetic field B(z). This feature allows us to measure directly the profile B(z) of the magnetic field inside the superconducting film in the Meissner state and to make a straightforward determination of lambda(ab). A substantial isotope shift Delta lambda(ab)/lambda(ab)=2.8(1.0)% at 4 K is observed, implying that the in-plane effective supercarrier mass m*(ab) is oxygen-isotope dependent with Delta m*(ab)/m*(ab)=5.5(2.0)%. These results are in good agreement with magnetization measurements on powder samples.


Physics Procedia | 2012

Musrfit: A Free Platform-Independent Framework for μSR Data Analysis

A. Suter; Bastian M. Wojek

A free data-analysis framework for muSR has been developed. musrfit is fully written in C++, is running under GNU/Linux, Mac OS X, as well as Microsoft Windows, and is distributed under the terms of the GNU GPL. It is based on the CERN ROOT framework and is utilizing the Minuit optimization routines for fitting. It consists of a set of programs allowing the user to analyze and visualize the data. The fitting process is controlled by an ascii-input file with an extended syntax. A dedicated text editor is helping the user to create and handle these files in an efficient way, execute the fitting, show the data, get online help, and so on. A versatile tool for the generation of new input files and the extraction of fit parameters is provided as well. musrfit facilitates a plugin mechanism allowing to invoke user-defined functions. Hence, the functionality of the framework can be extended with a minimal amount of overhead for the user. Currently, musrfit can read the following facility raw-data files: PSI-BIN, MDU (PSI), ROOT (LEM/PSI), WKM (outdated ascii format), MUD (TRIUMF), NeXus (ISIS).


Nature Communications | 2015

Thermodynamic phase transitions in a frustrated magnetic metamaterial.

Luca Anghinolfi; H. Luetkens; Justin K. Perron; M. G. Flokstra; Oles Sendetskyi; A. Suter; T. Prokscha; P. M. Derlet; S. L. Lee; L. J. Heyderman

Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases.


Physical Review Letters | 2012

Nanoscale Layering of Antiferromagnetic and Superconducting Phases in Rb 2 Fe 4 Se 5 Single Crystals

A. Charnukha; A. Cvitkovic; T. Prokscha; D. Pröpper; N. Ocelic; A. Suter; Zaher Salman; E. Morenzoni; J. Deisenhofer; V. Tsurkan; A. Loidl; B. Keimer; A. V. Boris

We studied phase separation in the single-crystalline antiferromagnetic superconductor Rb(2)Fe(4)Se(5) (RFS) using a combination of scattering-type scanning near-field optical microscopy and low-energy muon spin rotation (LE-μSR). We demonstrate that the antiferromagnetic and superconducting phases segregate into nanometer-thick layers perpendicular to the iron-selenide planes, while the characteristic in-plane size of the metallic domains reaches 10  μm. By means of LE-μSR we further show that in a 40-nm thick surface layer the ordered antiferromagnetic moment is drastically reduced, while the volume fraction of the paramagnetic phase is significantly enhanced over its bulk value. Self-organization into a quasiregular heterostructure indicates an intimate connection between the modulated superconducting and antiferromagnetic phases.


Physical Review Letters | 2012

Muonium emission into vacuum from mesoporous thin films at cryogenic temperatures

Aldo Antognini; Paolo Crivelli; T. Prokscha; Kim Siang Khaw; B. Barbiellini; L. Liszkay; K. Kirch; K. Kwuida; E. Morenzoni; F. M. Piegsa; Zaher Salman; A. Suter

We report on muonium (Mu) emission into vacuum following μ(+) implantation in mesoporous thin SiO(2) films. We obtain a yield of Mu into vacuum of (38±4)% at 250 K and (20±4)% at 100 K for 5 keV μ(+) implantation energy. From the implantation energy dependence of the Mu vacuum yield we determine the Mu diffusion constants in these films: D(Mu)(250 K)=(1.6±0.1)×10(-4)  cm(2)/s and D(Mu)(100 K)=(4.2±0.5)×10(-5) cm(2)/s. Describing the diffusion process as quantum mechanical tunneling from pore to pore, we reproduce the measured temperature dependence ∼T(3/2) of the diffusion constant. We extract a potential barrier of (-0.3±0.1) eV which is consistent with our computed Mu work function in SiO(2) of [-0.3,-0.9] eV. The high Mu vacuum yield, even at low temperatures, represents an important step toward next generation Mu spectroscopy experiments.


Physical Review Letters | 2004

Direct observation of nonlocal effects in a superconductor.

A. Suter; E. Morenzoni; R. Khasanov; H. Luetkens; T. Prokscha; N. Garifianov

We have used the technique of low energy muon spin rotation to measure the local magnetic field profile B(z) beneath the surface of a lead film maintained in the Meissner state (z depth from the surface, z less, similar 200 nm). The data unambiguously show that B(z) clearly deviates from an exponential law and represent the first direct, model independent proof for a nonlocal response in a superconductor.


Physical Review X | 2015

Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

A. Di Bernardo; Zaher Salman; X. L. Wang; M. Amado; M. Egilmez; M. G. Flokstra; A. Suter; S. L. Lee; J. H. Zhao; T. Prokscha; E. Morenzoni; M. G. Blamire; Jacob Linder; J. W. A. Robinson

In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux, the diamagnetic Meissner effect, from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilisation of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility meaning that the superconductivity can either repel (diamagnetic) or attract (paramagnetic) external magnetic flux. Here we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low energy muons, where antiferromagnetic Ho (4.5 nm) breaks time-reversal symmetry of the proximity induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.

Collaboration


Dive into the A. Suter's collaboration.

Top Co-Authors

Avatar

T. Prokscha

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

E. Morenzoni

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

Zaher Salman

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

H. Luetkens

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Luetkens

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Gozar

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge