Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. T. Archibald is active.

Publication


Featured researches published by A. T. Archibald.


Atmospheric Chemistry and Physics | 2016

Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

Nga L. Ng; Steven S. Brown; A. T. Archibald; Elliot Atlas; R. C. Cohen; J. N. Crowley; Douglas A. Day; Neil M. Donahue; Juliane L. Fry; Hendrik Fuchs; Robert J. Griffin; Marcelo I. Guzman; Hartmut Herrmann; Alma Hodzic; Yoshiteru Iinuma; Jose L. Jimenez; Astrid Kiendler-Scharr; Ben H. Lee; Deborah Luecken; Jingqiu Mao; Robert McLaren; Anke Mutzel; Hans D. Osthoff; Bin Ouyang; B. Picquet-Varrault; U. Platt; Havala O. T. Pye; Yinon Rudich; Rebecca H. Schwantes; Manabu Shiraiwa

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.


Physical Chemistry Chemical Physics | 2008

Structure-activity relationship (SAR) for the gas-phase ozonolysis of aliphatic alkenes and dialkenes.

Max R. McGillen; Trevor J. Carey; A. T. Archibald; John C. Wenger; Dudley E. Shallcross; Carl J. Percival

The configuration of alkyl substituents about carbon-carbon unsaturated bonds exerts a controlling influence on the rate of the ozonolysis reaction. Alkyl substituents can increase (via the inductive effect) and decrease (via the steric effect) the activity of unsaturated bonds, and an accurate description of this information ought to correlate with the ozonolysis rate coefficient. A strong linear relationship is observed (R2 = 0.94), providing the basis of our SAR method. SAR estimates were tested against literature measurements of ozonolysis rate coefficients for 48 aliphatic alkenes and dialkenes, and were found to be accurate to within a factor of 2.3 of the measured value for the entire dataset. This represents a significant improvement over methods reported in the literature, where quoted predictions are at best accurate to within a factor of 6.5. Rates of gas-phase ozonolysis of alkenes and dialkenes can now be predicted with unprecedented accuracy using a simple SAR. The SAR was then validated against new experimental data. Absolute rate coefficients for the gas-phase reaction of ozone with a series of alkenes were determined in a simulation chamber at 295 +/- 2 K and atmospheric pressure by monitoring the loss of ozone in the presence of excess alkene. The rate coefficients (in units of 1 x 10(-18) cm3 molecule(-1) s(-1)) are: 5.12 +/- 0.93 for 1-pentene, 2,3-dimethyl; 406 +/- 49 for 2-pentene, 2-methyl; 151 +/- 5 for (E)-2-hexene, 14.5 +/- 1.0 for 1,5-hexadiene and 20.7 +/- 3.1 for 1,5-hexadiene, 2-methyl. There is good agreement between the experimental and predicted values and the adjustable parameters of the SAR are shown to be insensitive to the inclusion of the new data. The use of the SAR in atmospheric chemical modelling is investigated. Ozonolysis and OH radical rate coefficients are estimated for each alkene and dialkene present in the MCM v3.1. The effects of error within predicted rate coefficients upon modelled concentrations of a number of key species, including O3, OH, HO2, NO and NO2 were rather small and is not in itself a major cause of uncertainty in modelled concentrations.


Journal of Geophysical Research | 2014

Multimodel estimates of atmospheric lifetimes of long‐lived ozone‐depleting substances: Present and future

M. P. Chipperfield; Qing Liang; Susan E. Strahan; Olaf Morgenstern; S. Dhomse; N. L. Abraham; A. T. Archibald; Slimane Bekki; Peter Braesicke; G. Di Genova; Eric L. Fleming; Steven C. Hardiman; D. Iachetti; Charles H. Jackman; Douglas E. Kinnison; Marion Marchand; G. Pitari; J. A. Pyle; E. Rozanov; Andrea Stenke; Fiona Tummon

We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a models own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.


Geophysical Research Letters | 2011

Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era

J. G. Levine; Eric W. Wolff; Anna E. Jones; Louise C. Sime; Paul J. Valdes; A. T. Archibald; G. D. Carver; N. J. Warwick; J. A. Pyle

We know from the ice record that the concentration of atmospheric methane, [CH4], at the Last Glacial Maximum (LGM) was roughly half that in the pre-industrial era (PI), buthow much of the difference was source-driven, and how much was sink-driven, remains uncertain. Recent developments include: a higher estimate of the LGM-PI change in methane emissions from wetlands―the dominant, natural methane source; and the possible recycling of OH consumed in isoprene oxidation―the principal methane sink. Here, in view of these developments, we use an atmospheric chemistry-transport model to re-examine the main factors affecting OH during this period: changes in air temperature and emissions of non-methane volatile organic compounds from vegetation. We find that their net effect was negligible(with and without an OH recycling mechanism), implyingthe change in [CH4] was almost entirely source driven―a conclusion that, though subject to significant uncertainties,can be reconciled with recent methane source estimates.


Geophysical Research Letters | 2012

Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons

R. Hossaini; M. P. Chipperfield; S. Dhomse; C. Ordóñez; Alfonso Saiz-Lopez; N. L. Abraham; A. T. Archibald; Peter Braesicke; P. J. Telford; N. J. Warwick; X. Yang; J. A. Pyle

Simulations with a chemistry-climate model (CCM) show a future increase in the stratospheric source gas injection (SGI) of biogenic very short-lived substances (VSLS). For 2000, the modelled SGI of bromine from VSLS is similar to 1.7 parts per trillion (pptv) and largest over the tropical West Pacific. For 2100, this increases to similar to 2.0 and similar to 2.7 pptv when the model is forced with Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCPs) 4.5 and 8.5. The increase is largely due to stronger tropical deep convection transporting more CHBr3 to the lower stratosphere. For CH2Br2, CHBr2Cl, CH2BrCl and CHBrCl2, changes to primary oxidant OH determines their SGI contribution. Under RCP 4.5 (moderate warming), OH increases in a warmer, more humid troposphere. Under RCP 8.5 (extreme warming) OH decreases significantly due to a large methane increase, allowing greater SGI of bromine from these VSLS. Potentially enhanced VSLS emissions in the future would further increase these estimates. Citation: Hossaini, R., et al. (2012), Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons, Geophys. Res. Lett., 39, L20813, doi:10.1029/2012GL053401.


Philosophical Transactions of the Royal Society B | 2011

The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: Coastal processes, land-use change and air quality

J. A. Pyle; N. J. Warwick; N. R. P. Harris; Mohd Radzi Abas; A. T. Archibald; M. J. Ashfold; Kirsti Ashworth; M. P. Barkley; G. D. Carver; Kelly Chance; J. R. Dorsey; D. Fowler; Siegfried Gonzi; B. Gostlow; C. N. Hewitt; Thomas P. Kurosu; James Lee; S. B. Langford; G. P. Mills; Sarah Moller; A. R. MacKenzie; Alistair J. Manning; Pawel K. Misztal; Mohd Shahrul Mohd Nadzir; E. Nemitz; Hannah Newton; L. M. O'Brien; S. Ong; D. E. Oram; Paul I. Palmer

We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NOx emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.


International Journal of Oil, Gas and Coal Technology | 2010

On the effect of a global adoption of various fractions of biodiesel on key species in the troposphere

Michael Cooke; A. R. Marven; Steven R. Utembe; A. T. Archibald; G. W. R. Ensor; Michael E. Jenkin; R.G. Derwent; Simon O'Doherty; Dudley E. Shallcross

Biodiesel use is being promoted worldwide as a green alternative to conventional diesel. A global three-dimensional chemistry transport model is employed to investigate the impact on air quality and global tropospheric composition of adopting biodiesel as a fractional component of diesel use. Five global simulations are conducted where emission changes of hydrocarbons and nitrogen oxides were applied within the model to investigate changes in tropospheric pollutants. Hydrocarbon emission reductions lead to an overall improvement in air quality with reductions in ozone, organic aerosol, aromatic species and PAN. However when the increase in NOx, caused by increased exhaust temperature, is included there is negligible difference in ozone production between mineral diesel and biodiesel blends. The cause of these effects is discussed. [Received: September 30, 2009; Accepted: December 12, 2009]


Bulletin of the American Meteorological Society | 2017

Atlantic Multi-decadal Variability and the UK ACSIS programme

Rowan Sutton; Gerard D. McCarthy; Jon Robson; Bablu Sinha; A. T. Archibald; Lesley J. Gray

CapsuleAtlantic Multidecadal Variability (AMV) is a key feature of Atlantic and global climate. The ACSIS program involves a unique grouping that will advance an integrated understanding of AMV.


Nature Communications | 2018

Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift

Jiankai Zhang; Wenshou Tian; Fei Xie; M. P. Chipperfield; W. Feng; Seok-Woo Son; N. Luke Abraham; A. T. Archibald; Slimane Bekki; Neal Butchart; Makoto Deushi; S. Dhomse; Yuanyuan Han; Patrick Jöckel; Douglas E. Kinnison; O. Kirner; M. Michou; Olaf Morgenstern; Fiona M. O’Connor; Giovanni Pitari; David A. Plummer; Laura E. Revell; E. Rozanov; Daniele Visioni; Wuke Wang; Guang Zeng

The Montreal Protocol has succeeded in limiting major ozone-depleting substance emissions, and consequently stratospheric ozone concentrations are expected to recover this century. However, there is a large uncertainty in the rate of regional ozone recovery in the Northern Hemisphere. Here we identify a Eurasia-North America dipole mode in the total column ozone over the Northern Hemisphere, showing negative and positive total column ozone anomaly centres over Eurasia and North America, respectively. The positive trend of this mode explains an enhanced total column ozone decline over the Eurasian continent in the past three decades, which is closely related to the polar vortex shift towards Eurasia. Multiple chemistry-climate-model simulations indicate that the positive Eurasia-North America dipole trend in late winter is likely to continue in the near future. Our findings suggest that the anticipated ozone recovery in late winter will be sensitive not only to the ozone-depleting substance decline but also to the polar vortex changes, and could be substantially delayed in some regions of the Northern Hemisphere extratropics.Climate change can exert a significant effect on the ozone recovery. Here, the authors show that the Arctic polar vortex shift associated with Arctic sea-ice loss could slow down ozone recovery over the Eurasian continent.


Environmental Science & Technology | 2014

Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

Grant Copeland; Edmond P. F. Lee; R.G. Williams; A. T. Archibald; Dudley E. Shallcross; John M. Dyke

In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

Collaboration


Dive into the A. T. Archibald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Pyle

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Braesicke

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge