Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. T. Lee is active.

Publication


Featured researches published by A. T. Lee.


The Astrophysical Journal | 2000

MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5°

S. Hanany; Peter A. R. Ade; A. Balbi; J. J. Bock; J. Borrill; A. Boscaleri; P. de Bernardis; Pedro G. Ferreira; V. V. Hristov; A. H. Jaffe; A. E. Lange; A. T. Lee; Philip Daniel Mauskopf; C. B. Netterfield; S. Oh; Enzo Pascale; B. Rabii; P. L. Richards; George F. Smoot; R. Stompor; C. D. Winant; Jiun-Huei Proty Wu

We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 square degrees region of the sky with 10 arcminute resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions. Analysis of this CMB map yields a power spectrum for the CMB anisotropy over the range 36 < l < 785. The spectrum shows a peak with an amplitude of 78 +/- 6 micro-Kelvin at l ~ 220 and an amplitude varying between ~40 micro-Kelvin and ~50 micro-Kelvin for 400 < l < 785.


The Astrophysical Journal | 2011

A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope

R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe


Physical Review Letters | 2001

Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background Observations

A. H. Jaffe; Peter A. R. Ade; A. Balbi; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; K. Coble; B. P. Crill; P. de Bernardis; P. Farese; Pedro G. Ferreira; K. Ganga; M. Giacometti; Shaul Hanany; E. Hivon; V. V. Hristov; A. Iacoangeli; A. E. Lange; A. T. Lee; L. Martinis; S. Masi; Philip Daniel Mauskopf; Alessandro Melchiorri; T. E. Montroy; C. B. Netterfield; S. Oh; Enzo Pascale; F. Piacentini; Dmitry Pogosyan

Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE DMR, provide consistent and high signal-to-noise measurements of the cosmic microwave background power spectrum at spherical harmonic multipole bands over 2<l less similar to 800. Analysis of the combined data yields 68% (95%) confidence limits on the total density, Omega(tot) approximately 1.11+/-0.07 (+0.13)(-0.12), the baryon density, Omega(b)h(2) approximately 0.032(+0.005)(-0.004) (+0.009)(-0.008), and the scalar spectral tilt, n(s) approximately 1.01(+0.09)(-0.07) (+0.17)(-0.14). These data are consistent with inflationary initial conditions for structure formation. Taken together with other cosmological observations, they imply the existence of both nonbaryonic dark matter and dark energy in the Universe.


The Astrophysical Journal | 2000

Constraints on Cosmological Parameters from MAXIMA-1

A. Balbi; Peter A. R. Ade; J. J. Bock; J. Borrill; A. Boscaleri; P. de Bernardis; Pedro G. Ferreira; Shaul Hanany; V. V. Hristov; A. H. Jaffe; A. T. Lee; S. Oh; Enzo Pascale; B. Rabii; P. L. Richards; George F. Smoot; R. Stompor; C. D. Winant; Jiun-Huei Proty Wu

We set new constraints on a seven-dimensional space of cosmological parameters within the class of inflationary adiabatic models. We use the angular power spectrum of the cosmic microwave background measured over a wide range of l in the first flight of the MAXIMA balloon-borne experiment (MAXIMA-1) and the low-l results from the COBE Differential Microwave Radiometer experiment. We find constraints on the total energy density of the universe, Ω = 1.0img1.gif, the physical density of baryons, Ωbh2 = 0.03 ± 0.01, the physical density of cold dark matter, Ωcdmh2 = 0.2img2.gif, and the spectral index of primordial scalar fluctuations, ns = 1.08 ± 0.1, all at the 95% confidence level. By combining our results with measurements of high-redshift supernovae we constrain the value of the cosmological constant and the fractional amount of pressureless matter in the universe to 0.45 < ΩΛ < 0.75 and 0.25 < Ωm < 0.50, at the 95% confidence level. Our results are consistent with a flat universe and the shape parameter deduced from large-scale structure, and in marginal agreement with the baryon density from big bang nucleosynthesis.


The Astrophysical Journal | 2014

Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg2 SPT-SZ survey

Z. Hou; C. L. Reichardt; K. Story; B. Follin; R. Keisler; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; R. de Putter; M. Dobbs; Scott Dodelson; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van

We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H_0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dn_s /d ln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Y_p and the effective number of neutrino species N_(eff)) and one that modifies the large-scale power due to the integrated Sachs-Wolfe effect (the sum of neutrino masses ∑m_ν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dn_s/d ln k with –0.046 0 from CMB+BAO+H_0 + SPT_(CL). The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H_0 show some preference for massive neutrinos; data combinations including H_0 favor nonzero masses only if BAO data are also included. We also constrain the two-parameter extensions N_(eff) + ∑m_ν and N_(eff) + Y_p to explore constraints on additional light species and big bang nucleosynthesis, respectively.


The Astrophysical Journal | 2013

ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

A. Weiß; C. De Breuck; D. P. Marrone; J. D. Vieira; James E. Aguirre; K. A. Aird; M. Aravena; M. L. N. Ashby; Matthew B. Bayliss; B. A. Benson; M. Béthermin; A. D. Biggs; L. E. Bleem; J. J. Bock; M. Bothwell; C. M. Bradford; M. Brodwin; J. E. Carlstrom; C. L. Chang; Sydney Chapman; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; Thomas P. Downes; C. D. Fassnacht; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; T. R. Greve

Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S_(1.4mm) > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz) 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders

Christine Wu Nordahl; Nicholas Lange; Deana D. Li; Lou Ann Barnett; A. T. Lee; Michael H. Buonocore; Tony J. Simon; Sally J. Rogers; Sally Ozonoff; David G. Amaral

Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism.


The Astrophysical Journal | 2000

Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of Boomerang

Philip Daniel Mauskopf; Peter A. R. Ade; P. de Bernardis; J. J. Bock; J. Borrill; A. Boscaleri; B. P. Crill; G. DeGasperis; G. De Troia; P. Farese; P. G. Ferreira; K. Ganga; M. Giacometti; Shaul Hanany; V. V. Hristov; A. Iacoangeli; A. H. Jaffe; A. E. Lange; A. T. Lee; S. Masi; Alessandro Melchiorri; F. Melchiorri; L. Miglio; T. E. Montroy; C. B. Netterfield; Enzo Pascale; F. Piacentini; P. L. Richards; G. Romeo; J. E. Ruhl

We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 µK(CMB).


The Astrophysical Journal | 2010

SPT-CL J0546-5345: A Massive z > 1 Galaxy Cluster Selected Via the Sunyaev-Zel'dovich Effect with the South Pole Telescope

Mark Brodwin; J. Ruel; Peter A. R. Ade; K. A. Aird; K. Andersson; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; G. G. Fazio; Ryan J. Foley; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; F. W. High; G. P. Holder; W. L. Holzapfel; J. D. Hrubes

United States. National Aeronautics and Space Administration (Jet Propulsion Laboratory (U.S.))


Review of Scientific Instruments | 2012

Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements

M. Dobbs; M. Lueker; K. A. Aird; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; John Clarke; T. M. Crawford; A. T. Crites; D. Flanigan; T. de Haan; E. M. George; N. W. Halverson; W. L. Holzapfel; J. D. Hrubes; B. R. Johnson; John Joseph; R. Keisler; J. Kennedy; Z. Kermish; T. M. Lanting; A. T. Lee; E. M. Leitch; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer

A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

Collaboration


Dive into the A. T. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. W. Halverson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. de Haan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. T. Crites

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge