A. Tomasz
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Tomasz.
Journal of Clinical Microbiology | 2003
M. Aires de Sousa; M.I. Crisóstomo; I. Santos Sanches; J. S. Wu; J. Fuzhong; A. Tomasz; H. de Lencastre
ABSTRACT One hundred thirty-two methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered from patients with S. aureus infections between January 1998 and February 1999 in two hospitals, one located in Taipei, Taiwan, and another in Nanjing, Peoples Republic of China, were examined for antibiotic susceptibility and for clonal type by a combination of three methods: hybridization of ClaI restriction digests with mecA- and Tn554-specific DNA probes and pulsed-field gel electrophoresis of chromosomal SmaI digests. Selected isolates representing each clonal type were also analyzed by spaA typing, multilocus sequence typing, and a multiplex PCR method capable of identifying the structural type of the staphylococcal cassette chromosome mec (SCCmec) carried by the bacteria. The overwhelming majority of isolates (126 of 132 or 95%) belonged to minor variants of a single clonal type resembling the Brazilian and Hungarian epidemic MRSA clones, which showed a common spaA type and which were either sequence type 239 (ST239) or ST241 (a single-locus variant of ST239) in association with SCCmec type III or IIIA.
Antimicrobial Agents and Chemotherapy | 2006
Susana Gardete; Shangwei Wu; Steven R. Gill; A. Tomasz
ABSTRACT Exposure of Staphylococcus aureus to cell wall inhibitors induces massive overexpression of a number of genes, provided that the VraSR two-component sensory regulatory system is intact. Inactivation of vraS blocks this transcriptional response and also causes a drastic reduction in the levels of resistance to beta-lactam antibiotics and vancomycin. We used an experimental system in which the essential cell wall synthesis gene of S. aureus, pbpB, was put under the control of an isopropyl-β-d-thiogalactopyranoside-inducible promoter in order to induce reversible perturbations in cell wall synthesis without the use of any cell wall-active inhibitor. Changes in the level of transcription of pbpB were rapidly followed by parallel changes in the vraSR signal, and the abundance of the pbpB transcript was precisely mirrored by the abundance of the transcripts of vraSR and some additional genes that belong to the VraSR regulon. Beta-lactam resistance in S. aureus appears to involve a complex stress response in which VraSR performs the critical role of a sentinel system capable of sensing the perturbation of cell wall synthesis and allowing mobilization of genes that are essential for the generation of a highly resistant phenotype. One of the sites in cell wall synthesis “sensed” by the VraSR system appears to be a step catalyzed by PBP 2.
International Journal of Systematic and Evolutionary Microbiology | 1997
Wesley E. Kloos; Deborah N. Ballard; John A. Webster; Romeo J. Hubner; A. Tomasz; Isabel Couto; G. L. Sloan; H. P. Dehart; Franz Fiedler; Karin Schubert; H. de Lencastre; Ilda Santos Sanches; H. E. Heath; P. A. Leblanc; A. Ljungh
Three subspecies of Staphylococcus sciuri, S. sciuri subsp. sciuri Kloos, Schleifer, and Smith 1976, 23AL emend. Kloos et al. 1997 [corrected], S. sciuri subsp. carnaticus subsp. nov., and S. sciuri subsp. rodentium subsp. nov., are described on the basis of their ribotype patterns, DNA-DNA liquid hybridization data, and phenotypic characteristics. Normalized ribotyping subdivided the S. sciuri patterns into three blocks of patterns, each corresponding to a subspecies. Each subspecies formed a separate, well-defined DNA similarity group when DNA-DNA hybridizations were conducted under stringent (70 degrees C) reassociation conditions. S. sciuri subsp. sciuri could be distinguished from the other subspecies on the basis of its ability to produce acid from D-cellobiose, alkaline phosphatase activity, and inability to produce either clumping factor or protein A. S. sciuri subsp. carnaticus could be distinguished by its ability to produce acid aerobically from D-xylose and maltose, inability to produce acid from D-melezitose, and smaller colony size on P agar. S. sciuri subsp. rodentium could be distinguished by its positive reaction in the latex agglutination test for clumping factor and/or protein A and generally higher frequencies and levels of oxacillin and methicillin resistance. All 40 strains of S. sciuri tested (including representatives of all three subspecies) hybridized with the mecA gene probe. All strains of S. sciuri subsp. sciuri, 79% of the strains of S. sciuri subsp. carnaticus and 89% of the strains of S. sciuri subsp. rodentium exhibited extracellular, staphylolytic enzyme activity. This activity was associated with an enzyme(s) that immunoblotted with a lysostaphin-specific monoclonal antibody; however, only three strains hybridized with a lysostaphin (end) gene probe. The type strain of S. sciuri subsp. carnaticus is DD 791 (= ATCC 700058), and the type strain of S. sciuri subsp. rodentium is DD 4761 (= ATCC 700061).
Journal of Bacteriology | 2007
Sandro F. F. Pereira; Adriano O. Henriques; Mariana G. Pinho; H. de Lencastre; A. Tomasz
We constructed a conditional mutant of pbpA in which transcription of the gene was placed under the control of an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible promoter in order to explore the role of PBP1 in growth, cell wall structure, and cell division. A methicillin-resistant strain and an isogenic methicillin-susceptible strain, each carrying the pbpA mutation, were unable to grow in the absence of the inducer. Conditional mutants of pbpA transferred into IPTG-free medium underwent a four- to fivefold increase in cell mass, which was not accompanied by a proportional increase in viable titer. Examination of thin sections of such cells by transmission electron microscopy or fluorescence microscopy of intact cells with Nile red-stained membranes showed a morphologically heterogeneous population of bacteria with abnormally increased sizes, distorted axial ratios, and a deficit in the number of cells with completed septa. Immunofluorescence with an antibody specific for PBP1 localized the protein to sites of cell division. No alteration in the composition of peptidoglycan was detectable in pbpA conditional mutants grown in the presence of a suboptimal concentration of IPTG, which severely restricted the rate of growth, and the essential function of PBP1 could not be replaced by PBP2A present in methicillin-resistant cells. These observations suggest that PBP1 is not a major contributor to the cross-linking of peptidoglycan and that its essential function must be intimately integrated into the mechanism of cell division.
Microbial Drug Resistance | 2003
Rita G. Sobral; Ana Madalena Ludovice; Susana Gardete; K. Tabei; H. de Lencastre; A. Tomasz
A carboxy-terminal fragment of murF was used to construct and insert a suicide plasmid into the chromosomal copy of the gene in the highly and homogeneously methicillin-resistant Staphylococcus aureus (MRSA) strain COL by Campbell type integration. The plasmid insertion generated a mutant in which the MIC value for oxacillin was reduced from 400 microg/ml of the parental strain to 0.75 microg/ml in 90% of the cells of the mutant cultures that were heterogeneous: they contained subpopulations of bacteria with a frequency of 10(-3) that were capable of expressing resistance at nearly the parental level. The impact of the murF mutation on antibiotic resistance was selective for beta-lactam antibiotics: there was no change in the susceptibility of the mutant to D-cycloserine, fosfomycin, beta-D-chloro-alanine, moenomycin, bacitracin, or vancomycin. Analysis of the mutant peptidoglycan showed decrease in the percentage of oligomeric components in rough proportion to the accumulation of several abnormal muropeptide components, which were identified as structural variants of the disaccharide tripeptide monomer. An abnormal cell wall precursor identified as UDP MurNac tripeptide was also detected in the cytoplasmic pool of the mutant strain. A normal proportion of oligomers and a greatly reduced representation of the disaccharide tripeptide were demonstrated in the cell wall of the murF mutants subpopulation that has retained the parental level of resistance. Northern analysis demonstrated a drastic reduction in the transcription rate of mecA in mutant F9 whereas mecA transcription increased in the subpopulation of bacteria that retained high-level resistance.
Journal of Bacteriology | 2004
Susana Gardete; Ana Madalena Ludovice; Rita G. Sobral; Sergio R. Filipe; H. de Lencastre; A. Tomasz
It was shown earlier that Tn551 inserted into the C-terminal region of murE of parental methicillin-resistant Staphylococcus aureus strain COL causes a drastic reduction in methicillin resistance, accompanied by accumulation of UDP-MurNAc dipeptide in the cell wall precursor pool and incorporation of these abnormal muropeptides into the peptidoglycan of the mutant. Methicillin resistance was recovered in a suppressor mutant. The murE gene of the same strain was then put under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter P(spac). Bacteria grown in the presence of suboptimal concentrations of IPTG accumulated UDP-MurNAc dipeptide in the cell wall precursor pool. Both growth rates and methicillin resistance levels (but not resistance to other antibiotics) were a function of the IPTG concentration. Northern analysis showed a gradual increase in the transcription of murE and also in the transcription of pbpB and mecA, parallel with the increasing concentrations of IPTG in the medium. A similar increase in the transcription of pbpB and mecA, the structural genes of penicillin-binding protein 2 (PBP2) and PBP2A, was also detected in the suppressor mutant. The expression of these two proteins, which are known to play critical roles in the mechanism of staphylococcal methicillin resistance, appears to be-directly or indirectly-under the control of the murE gene. Our data suggest that the drastic reduction of the methicillin MIC seen in the murE mutant may be caused by the insufficient cellular amounts of these two PBPs.
Journal of Bacteriology | 2006
Rita G. Sobral; Ana Madalena Ludovice; H. de Lencastre; A. Tomasz
The Staphylococcus aureus murF gene was placed under the control of a promoter inducible by IPTG (isopropyl-beta-d-thiogalactopyranoside). It was demonstrated that murF is an essential gene; it is cotranscribed with ddlA and growth rate, level of beta-lactam antibiotic resistance, and rates of transcription of the mecA and pbpB genes paralleled the rates of transcription of murF. At suboptimal concentrations of the inducer, a UDP-linked muramyl tripeptide accumulated in the cytoplasm in parallel with the decline in the amounts of the normal pentapeptide cell wall precursor. The abnormal tripeptide component incorporated into the cell wall as a monomeric muropeptide, accompanied by a decrease in the oligomerization degree of the peptidoglycan. However, incorporation of the tripeptide into the cell wall was limited to a relatively low threshold value. Further reduction of the amounts of pentapeptide cell wall precursor caused a gradual decrease in the cellular amounts of peptidoglycan, the production of a thinner peripheral cell wall, aberrant septae, and an overall increase in the diameter of the cells. The observations suggest that the role of murF exceeds its primary function in peptidoglycan biosynthesis and may also be involved in the control of cell division.
Antimicrobial Agents and Chemotherapy | 1989
A. Tomasz; H B Drugeon; H. de Lencastre; D Jabes; L McDougall; J Bille
Journal of Clinical Microbiology | 1995
L A Teixeira; C A Resende; L R Ormonde; R Rosenbaum; A. M. S. Figueiredo; H. de Lencastre; A. Tomasz
Journal of Clinical Microbiology | 1994
M.A. Dominguez; H. de Lencastre; Josefina Liñares; A. Tomasz