A. V. Maslov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. V. Maslov.
Stratigraphy and Geological Correlation | 2006
A. B. Kuznetsov; M. A. Semikhatov; A. V. Maslov; I. M. Gorokhov; E. M. Prasolov; M. T. Krupenin; I. V. Kislova
New data on Sr-and C-isotopic systematics of carbonate rocks from the Upper Riphean stratotype (Karatau Group of the southern Urals) are obtained for several southwestern sections of the Bashkirian meganticlinorium, which have not been studied before. The results obtained supplement the Sr-and C-isotopic information for the group upper horizons thus detailing chemostratigraphic characterization of the entire succession. Limestone and dolostone samples used to analyze the Sr isotope composition satisfy strict geochemical criteria of the isotopic system retentivity and have been subjected to preliminary treatment in ammonium acetate to remove secondary carbonate phases. Data on 255 samples of carbonate rocks (171 studied for the first time) show that δ13C value varies in the Karatau Group succession from −2.8 to +5.9 ‰ V-PDB with several in-phase excursions from the general trend in all the sections studied in the area 90 × 130 km. The δ13C variation trend demarcates several levels in the carbonate succession of the Karatau Group suitable for objectives of regional stratigraphy and for C-isotope chemostratigraphic subdivision of the Upper Riphean. The results of Sr isotopic analysis of 121 samples (51 unstudied before) from the Karatau Group imply that rocks in its lower part (the Katav Formation and basal horizon of the Inzer Formation) experienced considerable secondary alterations, while limestones and dolostones of the overlying interval of the group are frequently unaltered. In the “best” samples satisfying geochemical criteria of the isotopic system retentivity, the 87Sr/86Sr initial ratio increases from 0.70521–0.70532 in the lower Inzer deposits to 0.70611 in the upper Min’yar carbonates, decreasing to <0.70600 near the top of the latter. Above the regional hiatus separating the Min’yar and Uk formation, this ratio grows from 0.70533 to 0.70605–0.70609 in the limestone succession of the last formation.
Stratigraphy and Geological Correlation | 2008
A. B. Kuznetsov; G. V. Ovchinnikova; M. A. Semikhatov; I. M. Gorokhov; O. K. Kaurova; M. T. Krupenin; I. M. Vasil’eva; B. M. Gorokhovskii; A. V. Maslov
The Rb-Sr and U-Pb systematics are studied in carbonate deposits of the Satka and Suran formations corresponding to middle horizons of the Lower Riphean Burzyan Group in the Taratash and Yamantau anticlinoria, respectively, the southern Urals. The least altered rock samples retaining the 87Sr/86Sr ratio of sedimentation basin have been selected for analysis using the original method of leaching the secondary carbonate phases and based on strict geochemical criteria of the retentivity (Mn/Sr < 0.2, Fe/Sr < 5 and Mg/Ca < 0.024). The stepwise dissolution in 0.5 N HBr has been used to enrich samples in the primary carbonate phase before the Pb-Pb dating. Three (L-4 to L-6) of seven consecutive carbonate fractions obtained by the step-wise leaching are most enriched in the primary carbonate (in terms of the U-Pb systematics). In the 206Pb/204Pb-207Pb/204Pb diagram, data points of these fractions plot along an isochron determining age of 1550 ± 30 Ma (MSWD = 0.7) for the upper member of the Satka Formation. The initial 87Sr/86Sr ratio in the least altered limestones of this formation is within the range of 0.70460–0.70480. Generalization of the Sr isotopic data published for the Riphean carbonates from different continents showed that 1650–1350 Ma ago the 87Sr/86Sr ratio in the world ocean was low, slightly ranging from 0.70456 to 0.70494 and suggesting the prevalent impact of mantle flux.
Lithology and Mineral Resources | 2004
A. V. Maslov; M. T. Krupenin; Yu. L. Ronkin; E. Z. Gareev; O. P. Lepikhina; O. Yu. Popova
General trends of the formation of Middle Riphean fine-grained aluminosiliciclastic rocks in the Bashkir Meganticlinorium are considered. It is shown that Yurmatinian shales do not contain any significant pyroclastic admixture. Judging from the relatively constant Th/Cr ratio throughout the Yurmatinian section, the tectonic regime in the study territory during the early Middle Riphean is suggested to be rather stable. The main paleoclimatic indices and indicators of the pelitic material maturity (CIA, CIW, IVC, PIA, and ΣCe/ΣY) suggest that paleodrainage systems in the early Middle Riphean were dominated by humid climate that gave way to the arid or semiarid type in the middle Yurmatinian. The low Mo/Mn ratio and some other indicators of redox conditions in shales from all Yurmatinian lithostratigraphic units show that no explicit reducing conditions existed in the basin during the early Middle Riphean. The shales were characterized by the increase in K2O/Al2O3 ratio, gradual enrichment in REE, and growth of LREE/HREE and LaN/YbN ratios toward the middle Yurmatinian, indicating the gain of an appreciable amount of slightly weathered arkosic aluminosiliciclastic material in the sedimentary basin about 1220–1200 Ma ago. The REE distribution and the UCC- and AUC-normalized shale compositions suggest that the eroded upper crust was compositionally close to the UCC. The occurrence of mafic and ultramafic rocks is also inferred. Data points of Yurmatinian shales plotted in the Cr–Ni, Eu/Eu*–GdN/YbN, and (La/YB)N–YbN diagrams are localized between the fields of Upper Archean and post-Archean rocks or within the latter field. Hence, post-Archean igneous and metamorphic complexes prevailed in paleodrainage systems of the early Middle Riphean. This is also confirmed by the model Nd ages.
Doklady Earth Sciences | 2006
Yu. L. Ronkin; D. V. Grazhdankin; A. V. Maslov; G. A. Mizens; D. I. Matukov; M. T. Krupenin; G. A. Petrov; O. P. Lepikhina; A. Yu. Kornilova
The Serebryanka and Sylvitsa groups on the western slope of the Urals characterize the Vendian section of the eastern folded framework of the East European Platform [1]. They are conspicuous against the background of the coeval platformal sequences by their relatively complete sedimentary record, sufficiently good outcrops, and opportunities for detailed sedimentological study both along and across the regional paleoslope. The tillite units serve as key elements of the stratigraphic framework of the Serebryanka Group. However, their number and continuity along the strike remain a matter of debate [1, 2]. The Sylvitsa Group comprises the following formations recognized on a regional scale (from bottom to top): Staropechny Formation (with a thin tillite unit at the base), Perevalok, Chernokamen, and Ust’-Sylvitsa formations. Their specific structural features serve as criteria for largescale correlation with Upper Vendian platformal sequences [1‐3]. The Ediacaran-type soft-bodied fossil biota is abundant in the Chernokamen Formation. The great density of fossil populations, the high taxonomic diversity of this biota, and the presence of endemic (for the Southeast White Sea region) taxons give grounds to suggest biogeographic links between the Central Ural and White Sea segments of the Late Vendian paleobasin [4]. The fossil biota from sedimentary rocks of the Chernokamen Formation comprises Cyclomedusa davidi Sprigg, Dickinsonia sp., Dickinsonia tenuis Glaessner et Wade, Ediacaria flindersi Sprigg, Eoporpita medusa Wade, Inaria khatyspytia (Vodanjuk), Irridinitus multiradiatus Fedonkin, Medusinites mawsoni (Sprigg), Nemiana simplex Palij, Paliella patelliformis Fedonkin, Palaeopascichnus delicatus Palij, Protodipleurosoma wardi Sprigg, Vaizitsinia sophia Sokolov et Fedonkin, and Yorgia sp. These data make it possible to correlate the Chernokamen Formation of the Central Urals with the reference section of the southeastern White Sea region. The Upper Vendian of the White Sea region includes a very characteristic taxon Yorgia , which appears for the first time in the Zimnegorsk Formation. However, insufficiently reliable stratigraphic and facies affiliations of the Sylvitsa Group and the absence of isotopic datings remained serious obstacles for such correlation until recently. In 2002, we found thin volcanic ash beds in the upper part of the Staropechny Formation. These beds are associated with the chocolate brown thin-bedded mudstones that crop out on the left bank of the Sylvitsa River downstream of the Kernos Creek. In 2003, volcanic ash beds, which are also closely related to the chocolate brown mudstones, were revealed in the Staropechny and Perevalok formations and in the lower subformation of the Chernokamen Formation in the Vilukha ravine on the left and right banks of the Us’va River. In 2004, ash beds were traced for 4.5 km in the lower subformation of the Chernokamen Formation along the Mezhevaya Utka River. In all the above cases, ash beds were readily discernible as a poorly cemented light gray (with pinkish, cream, and greenish hues) rock among the host chocolate brown mudstones. Members of chocolate brown mudstones with volcanic ash beds are important for Upper Vendian stratigraphy of the East European Platform. The tuffaceous rocks serve as key units for subdivision and correlation of outcrops and borehole sections [2, 3, 5, 6]. The most complete Upper Vendian platformal sections of the Mezen syneclise and the southeastern White Sea region
Geochemistry International | 2007
A. V. Maslov
The paper summarizes data on the geochemistry of metaterrigenous rocks from 26 reference Archean territories: the Pilbara and Yilgarn blocks; Isua and Akilia complexes; Wittwatersrand, Swaziland, Pongola, and Yellowknife supergroups; Khapchanskaya and Gimol’skaya groups; Kan, Sharyzhalgai, Chupa, Slyudyanka, and Onot complexes; etc. The general sets of data points and the calculated median values of the concentrations of trace elements and their ratios are compared to those of Archean and post-Archean shales. In Ce/Cr-Co/Hf, Eu/Eu*-GdN/YbN, Ce/Cr-Th/Sc, Th/Sc-Sc, Th-La, La/Sm-Sc/Th, Yb-GdN/YbN, Th/Sc-Cr, Ni-Cr, and some other diagrams, the fields in which the most data points of Archean metaterrigenous rocks group are outlined. The results of this research indicate that there are no values of geochemical parameters that are inherent only in Archean or only in post-Archean fine-grained terrigenous rocks. Within 80–85% confidence levels, most individual compositions of Archean metaterrigenous rocks are characterized by the following geochemical parameters: (1) Th/Sc < 0.6–0.7, (2) Ce/Cr < 0.6, and (3) Eu/Eu* > 0.70–0.75. If the median values are used, these ranges can be further constrained to (i) Th/Sc < 0.55, (ii) Ce/Cr < 0.4, (iii) Cr/Th > 25, and (iv) Th < 12 ppm. Compared to PAAS, Archean metaterrigenous rocks are characterized by higher median concentrations of Cr and Ni and the Eu/Eu*, Sc/Th, Cr/Th, and Co/Hf ratios, whereas the Nb, La, Ce, Yb, Hf, Th, and U concentrations and the La/Sm and Ce/Cr ratios of PAAS are, conversely, lower. The median values of the LaN/YbN ratios of reference Archean terranes can be either higher or lower than in PAAS, likely depending on the proportions of various rock types in the sources of the terrigenous material. The medians of the GdN/YbN ratios of ∼60% of the reference Archean metaterrigenous terranes in our databank are slightly higher than the GdN/YbN ratios of PAAS. The median values of the LaN/SmN ratios of Archean terrigenous rocks are mostly slightly lower than the typical PAAS ratios.
Doklady Earth Sciences | 2013
T. V. Romanyuk; N. B. Kuznetsov; A. V. Maslov; Elena Belousova; Yu. L. Ronkin; V. M. Gorozhanin; E. N. Gorozhanina
1200 In our previous communication [1], we presented geochronological data on detrital zircons (dZr) from sandstones of the Lemeza Subformation of the Karat� avian Zil’merdak Formation (standard of the Upper Riphean in northern Eurasia) developed in the Bash� kir Anticlinorium of the Southern Urals that borders the East European Platform (Fig. 1). From a total of 79 analyses, 66 qualified measurements yielded 206 Pb/ 207 Pb ages ranging from 3070 ± 27 to 1817 ± 59 Ma (Fig. 2a). The occurrence of two distinct differ�
Geochemistry International | 2006
A. V. Maslov; Yu. L. Ronkin; M. T. Krupenin; G. A. Petrov; A. Yu. Kornilova; O. P. Lepikhina; O. Yu. Popova
This paper presents the first data on the systematics of rare earth elements (REE), Th, Hf, Sc, Co, Cr, and Ni and the Nd model ages of fine-grained aluminosilicate clastic rocks of the Serebryanka and Sylvitsa groups of the Vendian from the Kvarkushsko-Kamennogorskii meganticlinorium (western slope of the Central Urals). It was found that the REE distribution patterns of shales and mudstones of the two groups are similar to those of the majority of post-Archean fine-grained terrigenous complexes. The presence of pelitic rocks with GdN/YbN > 2.0 in a number of Vendian levels suggests a contribution from an Archean component in the composition of the fine aluminosilicate clastic material. This is probably also indicated by the high degree of heavy REE depletion in some mudstone samples. The REE systematics allow us to suppose a heterogeneity of Vendian paleocatchments and variations in their composition with time. The eroded areas had the most mature composition in the beginning of Serebryanka. Starting from the second half of Serebryanka, mafic and/or ultramafic rocks started playing a significant role in the provenances. The rocks of the lower portion of the Serebryanka Group show TNd(DM) values of about 2.0 Ga, whereas the upper part of the section is dominated by rocks with TNd(DM) ≅ 1.77–1.73 Ga. This indicates that during the Taninskaya and Koiva time periods, fine aluminosilicate clastic material was supplied into the sedimentation region mainly from the west, from the eastern areas of the east European platform, where Archean and Early Proterozoic crystalline complexes dominated. A decrease in model ages was related to the addition of juvenile mantle material to the mature continental crust. Such processes can be illustrated by the mafic-ultramafic complexes (Dvoretskii, Shpalorezovskii, Vil’vinskii, etc.) located in the field of Vendian sedimentary sequences, which show TNd(DM) values from 824 to 707 Ma. It was concluded that the history of the formation of an Early Vendian rift in the western slope of the central Urals included only one rifting event (rather than three, as was previously supposed), which was supported by a variety of recent geological and isotope geochemical data.
Doklady Earth Sciences | 2015
Victoria B. Ershova; Andrei V. Prokopiev; Andrei K. Khudoley; G. V. Shneider; T. Andersen; Kåre Kullerud; A. A. Makar’ev; A. V. Maslov; D. A. Kolchanov
The U–Pb (LA–ICPMS) age was established for detrital zircons from the oldest, intensely deformed metasedimentary complexes without reliable fossils’ record, which represent the folded basement of the North Kara basin and are exposed on Bol’shevik and Troinoi islands (Severnaya Zemlya and Izvestii TSIK archipelagoes, respectively). Our data suggest the common evolution of the Cambrian–Ordovician sequences exposed on the islands of both archipelagoes.
Doklady Earth Sciences | 2014
T. V. Romanyuk; N. B. Kuznetsov; A. V. Maslov; Elena Belousova; M. T. Krupenin; Yu. L. Ronkin; V. M. Gorozhanin; E. N. Gorozhanina
This paper presents the results of selective study of trace elements (29 analyses) and the Lu/Hf isotopic system (41 analyses) in preliminarily dated (U-Pb) detrital zircons (dZrs) from sandstones of the Ai Formation of the Burzyan Group of the Bashkirian Anticlinorium, which compose the basal horizons of the typical Riphean section of the Southern Urals. The statistically processed trace-element patterns of dZrs showed that “diorites” were dominant over “syenites” among the source rocks of dZrs. The rock types estimated by trace-element patterns for the cores and rims of two large grains (“diorite” and “syenite”) coincided. The analysis of the Lu/Hf isotopic system of dZrs revealed a wide dispersion of the ɛHf value from +7.1 to −20.1 at the TDMC model age of the substrate from 2.25 to 3.95 Ga. Four grains (in one case with the core and rim studied) from the population of the large transparent cherry zircons (TCZ) are characterized by the “syenitic” rock type and extremely ancient TDMC values of 3.22, 3.45, 3.64, 3.66, and 3.75 Ga at ages of zircons of 2486, 2784, 2873, 1977, and 1984 Ma, respectively. Two “dioritic” grains from the TCZ population have significantly distinct parameters: 2.37 and 2.51 Ga at 2049 and 2057 Ma, respectively. It is evident that this specific population of dZrs was formed with a significant contribution of very ancient crustal material, which became active under “syenitic” magmatism and provided the TDMC value of >3.5 Ga. Numerous juvenile dZrs form a compact cluster, which correspond to the rocks of the southern part of the Volga-Sarmatian orogen (age of 2.1–2.0 Ga, TDMC = 2.1–2.4 Ga). The complexes of the entire the Volga-Uralia, the Volga-Sarmatian orogen, and adjacent areas could be the provenance areas for the Ai sandstones in contrast to the northeastern areas of the East-European Platform with dominant “granitic” source rocks and TDMC values lower than 3.5 Ga.
Doklady Earth Sciences | 2016
N. B. Kuznetsov; Elena Belousova; K. E. Degtyarev; E. S. Pyzhova; A. V. Maslov; V. M. Gorozhanin; E. N. Gorozhanina; T. V. Romanyuk
The first results of U–Pb dating of detrital zircons from Upper Ordovician sandstones of the Bashkir uplift in the Southern Urals and U–Pb isotopic ages available for detrital zircons from six stratigraphic levels of the Riphean–Paleozoic section of this region are discussed. It is established that the long (approximately 1.5 Ga) depositional history of sedimentary sequences of the Bashkir uplift includes a peculiar period lasting from the Late Vendian to the Emsian Age of the Early Devonian (0.55–0.41 Ga). This period is characterized by the following features: (1) prevalence of material from eroded Mesoproterozoic and Early Neoproterozoic crystalline complexes among clastics with ages atypical of the Volga–Urals segment of the East European Platform basement; (2) similarity of age spectra obtained for detrital zircons from different rocks of the period: Upper Vendian–Lower Cambrian lithic sandstones and Middle Ordovician substantially quartzose sandstones.