Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. V. Nurmikko is active.

Publication


Featured researches published by A. V. Nurmikko.


Applied Physics Letters | 1991

Blue‐green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells

H. Jeon; J. Ding; William R. Patterson; A. V. Nurmikko; W. Xie; D. C. Grillo; M. Kobayashi; R. L. Gunshor

Laser diode action in the blue‐green has been observed from (Zn,Cd)Se quantum wells within ZnSe/Zn(S,Se) p‐n heterojunctions up to 250 K. Operation is reported for two different configurations for which the GaAs substrate serves either as the n‐ or p‐type injecting contact. In pulsed operation, output powers exceeding 0.6 W have been measured in devices prepared on both n‐type and p‐type GaAs epitaxial buffer layers and substrates.


Neuron | 2010

Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons

Scott J. Cruikshank; Hayato Urabe; A. V. Nurmikko; Barry W. Connors

Thalamocortical and corticothalamic pathways mediate bidirectional communication between the thalamus and neocortex. These pathways are entwined, making their study challenging. Here we used lentiviruses to express channelrhodopsin-2 (ChR2), a light-sensitive cation channel, in either thalamocortical or corticothalamic projection cells. Infection occurred only locally, but efferent axons and their terminals expressed ChR2 strongly, allowing selective optical activation of each pathway. Laser stimulation of ChR2-expressing thalamocortical axons/terminals evoked robust synaptic responses in cortical excitatory cells and fast-spiking (FS) inhibitory interneurons, but only weak responses in somatostatin-containing interneurons. Strong FS cell activation led to feedforward inhibition in all cortical neuron types, including FS cells. Corticothalamic stimulation excited thalamic relay cells and inhibitory neurons of the thalamic reticular nucleus (TRN). TRN activation triggered inhibition in relay cells but not in TRN neurons. Thus, a major difference between thalamocortical and corticothalamic processing was the extent to which feedforward inhibitory neurons were themselves engaged by feedforward inhibition.


ACS Nano | 2013

Nanotools for neuroscience and brain activity mapping.

A. Paul Alivisatos; Anne M. Andrews; Edward S. Boyden; Miyoung Chun; George M. Church; Karl Deisseroth; John P. Donoghue; Scott E. Fraser; Jennifer Lippincott-Schwartz; Loren L. Looger; Sotiris C. Masmanidis; Paul L. McEuen; A. V. Nurmikko; Hongkun Park; Darcy S. Peterka; Clay Reid; Michael L. Roukes; Axel Scherer; Mark J. Schnitzer; Terrence J. Sejnowski; Kenneth L. Shepard; Doris Tsao; Gina G. Turrigiano; Paul S. Weiss; Chris Xu; Rafael Yuste; Xiaowei Zhuang

Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.


Applied Physics Letters | 1992

Graded band gap ohmic contact to p-ZnSe

Y. Fan; J. Han; L. He; J. Saraie; R. L. Gunshor; M. Hagerott; H. Jeon; A. V. Nurmikko; G. C. Hua; N. Otsuka

We describe a low‐resistance quasi‐ohmic contact to p‐ZnSe which involves the injection of holes from heavily doped ZnTe into ZnSe via a Zn(Se,Te) pseudograded band gap region. The specific contact resistance is measured to be in the range of 2–8×10−3 Ω cm2. The graded heterostructure scheme is incorporated as an efficient injector of holes for laser diode and light emitting diode devices, demonstrating the usefulness of this new contact scheme at actual device current densities.


Applied Physics Letters | 1998

AlGaN/GaN quantum well ultraviolet light emitting diodes

Jung Han; Mary H. Crawford; R. J. Shul; Jeffrey J. Figiel; M. Banas; Lei Zhang; Y.-K. Song; H. Zhou; A. V. Nurmikko

We report on the growth and characterization of ultraviolet GaN quantum well light emitting diodes. The room-temperature electroluminescence emission was peaked at 353.6 nm with a narrow linewidth of 5.8 nm. In the simple planar devices, without any efforts to improve light extraction efficiency, an output power of 13 μW at 20 mA was measured, limited in the present design by absorption in the GaN cap layer and buffer layer. Pulsed electroluminescence data demonstrate that the output power does not saturate up to current densities approaching 9 kA/cm2.


The Journal of Physiology | 2007

Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia

John P. Donoghue; A. V. Nurmikko; Michael J. Black; Leigh R. Hochberg

This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allow persons with paralysis to operate assistive technologies or to reanimate muscles based upon a command signal that is obtained directly from the brain. Such systems require the development of sensors to detect brain signals, decoders to transform neural activity signals into a useful command, and an interface for the user. We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex. We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication. We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.


Journal of Neural Engineering | 2013

An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

David A. Borton; Ming Yin; Juan Aceros; A. V. Nurmikko

OBJECTIVE Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. APPROACH We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. MAIN RESULTS Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. SIGNIFICANCE We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have the potential for wider diagnosis of neurological conditions and will advance brain research.


Applied Physics Letters | 1992

Blue and green diode lasers in ZnSe‐based quantum wells

H. Jeon; J. Ding; A. V. Nurmikko; W. Xie; D. C. Grillo; M. Kobayashi; R. L. Gunshor; G. C. Hua; N. Otsuka

Laser diode operation has been obtained from (Zn,Cd)Se/ZnSe and (Zn,Cd)Se/Zn(S,Se) quantum well structures in the blue and the green. The devices, prepared on p‐ and n‐type (In,Ga)As or GaAs buffer layers for lattice matching purposes to control the defect density, have been operated at near‐room‐temperature conditions and briefly at room temperature with uncoated end facets. Quasi‐continuous wave operation has been obtained at T=77 K.


Applied Physics Letters | 2001

Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors

K. E. Waldrip; J. Han; Jeffrey J. Figiel; H. Zhou; E. Makarona; A. V. Nurmikko

In situ stress monitoring has been employed during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors (DBRs). It was found that the insertion of multiple AlN interlayers is effective in converting the tensile growth stress typically observed in this system into compression, thus alleviating the problem of crack generation. Crack-free growth of a 60 pair Al0.20Ga0.80N/GaN quarter-wavelength DBR was obtained over the entire 2 in. wafer; an accompanying reflectivity of at least 99% was observed near the peak wavelength around 380 nm.


quantum electronics and laser science conference | 2009

Picosecond Ultrasonic measurements using an optical cavity

Yanqiu Li; Qian Miao; A. V. Nurmikko; Humphrey J. Maris

We have implemented a new means of measuring very high frequency ultrasound in nanostructured materials (known as Picosecond Ultrasonics) by using a high-Q optical resonator that enables significant enhancement and detailed characterization of ultrasound signals.

Collaboration


Dive into the A. V. Nurmikko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge