A. V. Pushin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. V. Pushin.
Physics of Metals and Metallography | 2012
V. G. Pushin; N. N. Kuranova; A. V. Pushin; E. Z. Valiev; N. I. Kourov; A. E. Teplykh; A. N. Uksusnikov
The results of the comparative analysis of the Ti50Ni25Cu25-alloy structures produced in the initial amorphous state by rapid quenching from the melt (RQM), after severe plastic deformation by torsion under high pressure (HPT), and postdeformation heat treatment (PHT) are presented. The study was carried out using neutron and X-ray diffraction, transmission and scanning electron microscopy, and measurements of electrical properties. The initially amorphous alloy has been established to nanocrystallize after torsion under a pressure of 7 GPa to 0.5 revolutions of the anvil. Then, after 1, 5, 10, and 15 rev, the alloy again undergoes the strain-induced amorphization even with the retention, even after 5–15 rev, of a large number of highly dispersed nanocrystals less than 3–4 nm in size with a distorted B2 lattice in the amorphous matrix. Their crucial role as nuclei of crystallization provides the total low-temperature nanocrystallization during subsequent annealing starting from 250–300°C. It is shown that PHT of the alloy amorphized by HPT makes it possible to produce extremely uniform nanocrystalline (NC), submicrocrystalline (SMC), or bimodal (NC + SMC) austenitic B2-type structures in it. A complete diagram of thermoelastic martensitic transformations in the region of B2-austenite states, from nanostructured state to conventional polycrystalline one, has been constructed. The size effect on the stabilization of martensitic transformation in nanocrystalline B2 alloy has been established.
Physics of Metals and Metallography | 2012
V. G. Pushin; Ruslan Z. Valiev; E. Z. Valiev; N. I. Kourov; N. N. Kuranova; V. V. Makarov; A. V. Pushin; A. N. Uksusnikov
Results of investigations of structural and phase transformations that occur in the titanium-nickelide-based alloy Ti49.5Ni50.5 with a shape memory effect during severe plastic deformation by torsion under high pressure (HPT) are reported. The studies were performed using transmission and scanning electron microscopy, neutron and X-ray diffraction, and measurements of temperature dependences of electrical resistivity. The martensitic B2 → B19′ transformation was found to be induced in the alloy when applying a high pressure. After unloading, the martensitic B19′ phase is retained in the alloy. The fine structure of the B19′ martensite and its evolution into nanocrystalline and, subsequently, amorphous state during HPT with 1/4, 1/2, 1, 5, and 10 rev have been studied. It was shown that, after HPT, all nanosized crystallites whose sizes are less than 30–50 nm have a B2-type structure and, therefore, the reverse martensitic B19′ → B2 transformation is realized in the alloy at room temperature after unloading.
Technical Physics | 2016
V. G. Pushin; N. N. Kuranova; A. V. Pushin; A. N. Uksusnikov; N. I. Kourov
The effect of alloying by 12–20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi–NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19’ martensitic transformations, which occur in the temperature range 320–600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19’ phases are measured, and the microstructure of the B19’ martensite is analyzed.
Physics of Metals and Metallography | 2012
A. V. Pushin; A. A. Popov; V. G. Pushin
Methods of X-ray diffraction, transmission and scanning electron microscopy, and electron diffraction have been used to study phase composition and structure of an almost stoichiometric alloy Ti50Ni25Cu25. The alloys of the quasi-binary section TiNi-TiCu to be studied, which exhibit in the initial ascast state thermoelastic martensitic transformations B2 ↔ B19 and related shape-memory effects, have been produced by rapid quenching of the melt (melt spinning technique). The chemical composition of the Ti50 + xNi25 − xCu25 alloys was varied with respect to titanium and nickel within x ≤ ±1% (from Ti49Ni26Cu25 to Ti51Ni24Cu25). It has been shown that the rapid quenching from the melt at a cooling rate of 106 K/s provides amorphization for all the alloys under consideration. Heating to 723 K or higher temperatures leads to the devitrification of the amorphous alloys with the formation of a polycrystalline structure of the B2 austenite. The mechanical properties of the alloys have been measured in the initial amorphous state and after subsequent heat treatment. It has been established that, depending on the degree of deviation of the alloy from the stoichiometric composition, which leads to solid solution decomposition in the process of nanocrystallization upon heat treatment, there occur regular changes in the mechanical properties and shape-memory effects of the alloys. The characteristic temperatures of the onset and finish of the process of crystallization from the amorphous and amorphous-crystalline states and the critical temperatures of the onset and finish of the forward and reverse thermoelastic martensitic transitions have been determined by measuring temperature dependences of the electrical resistivity of the alloys. The diagram of the dependence of the critical temperatures on the chemical composition of the alloy has been constructed.
Physics of Metals and Metallography | 2013
A. V. Pushin; A. A. Popov; V. G. Pushin
Methods of X-ray diffraction, transmission and scanning electron microscopy, and selected-area electron diffraction (SAED) have been used to study the phase and elemental composition and structure of alloys close to the stoichiometric Ti50Ni25Cu25 alloy. Based on the method of rapid quenching of the melt (free-jet melt spinning), alloys of the quasi-binary TiNi-TiCu section have been prepared, which in the initial as-cast state exhibited the thermoelastic martensitic transformations B2 ↔ B19 and related shape-memory effects. The chemical composition of the Ti50 + xNi25Cu25 − x alloys was varied by changing titanium and copper concentrations within x ≤ ±1 at % (from Ti49Ni25Cu26 to Ti51Ni25Cu24). It has been established that quenching at a cooling rate equal to 106 K/s leads to the amorphization of all the alloys under consideration. Heating to 723 K and higher leads to the devitrification of the alloy with the formation of a nanocrystalline or submicrocrystalline structure of the B2 austenite. The mechanical properties of these alloys have been measured in the initial amorphous state and in the polycrystalline martensitic state. It has been shown that, depending on the extent of the deviations of the alloy composition from the stoichiometry, which cause the decomposition of the alloys in the process of nanocrystallization, regular changes are observed in their mechanical properties and in the shape-memory effects. The kinetics of the processes of the devitrification of the alloys, as well of the forward and reverse martensitic transformations, have been studied, their characteristic temperatures have been determined, and a diagram of the dependence of the characteristic temperatures on the chemical composition of the alloys has been constructed.
Physics of Metals and Metallography | 2011
V. G. Pushin; N. N. Kuranova; A. V. Pushin; N. I. Kourov; V. P. Pilyugin
Results of comparative studies of the structure of the cast martensitic Ti50Ni25Cu25 alloy in the initial state, after severe plastic deformation by high-pressure torsion (HPT), and after subsequent annealing are presented. The studies have been performed by X-ray diffraction, transmission and scanning electron microscopy, and measurements of electrical properties. It has been established that the alloy undergoes almost complete amorphization after torsion using 5 and 10 rev of anvils under a pressure of 7 GPa. This result can be explained by the large value of shear deformation (true strain from 6 to 7 units) and the retention of an extremely large quantity of highly dispersed (less than 3–4 nm in size) nanocrystals with a distorted B2 lattice in the amorphous matrix even at room temperature. Their determining role as nuclei of crystallization ensures the total process of low-temperature nanocrystallization upon subsequent annealing, beginning from 250–300°C. It is shown that the annealing of the alloy amorphized during HPT makes it possible to produce extremely uniform nanocrystalline (NC), submicrocrystalline (SMC), or bimodal (NC + SMC) structures of B2 austenite. For the first time, a complete diagram of thermoelastic martensitic transformations in the field of B2-austenite states, from nanostructured to usual polycrystalline, has been constructed for the Ti50Ni25Cu25 alloy. The size effect of stabilization of the martensite transformation has been found in the nanocrystalline B2 alloy.
Physics of Metals and Metallography | 2015
V. G. Pushin; N. N. Kuranova; V. V. Makarov; A. V. Pushin; A. V. Korolev; N. I. Kourov
The structure, thermoelastic martensitic transformations, and physical properties of the usual microcrystalline and rapidly quenched submicrocrystalline ternary alloys of the quasi-binary TiNi–TiCu section with a copper content to 35 at % have been studied in a wide temperature range. The fine structure of the alloys has been investigated by the methods of the analytical transmission and scanning electron microscopy, and selected-area electron diffraction, including the in situ heating and cooling in the column of the microscope. The main specific features of the premartensitic state of the B2 austenite, the morphology, and the fine structure of the B19 and B19′ martensitic phases have been established, and their evolution upon the alloying with copper and upon grain refinement and cooling and heating in situ have been studied. According to the data of the temperature measurements of electrical resistance, magnetic susceptibility, and XRD analysis, generalized complete diagrams of the B2 ↔ B19′, B2 ↔ B19 ↔ B19′ and B2↔ B19 martensitic transformations that occur upon cooling in these alloys with an increase in the copper concentration in the limits of 0–8, 8–15, and 15–35 at %, respectively, have been constructed.
Technical Physics Letters | 2014
T. E. Kuntsevich; A. V. Pushin; V. G. Pushin
Titanium-nickel (TiNi) based alloys doped with hafnium and copper have been obtained by melt-jet spinning at a cooling rate of 105–106 K/s. The melt-spun ribbons have been studied by the electron — microscopy and X-ray diffraction techniques. It is established that, depending on the content of doping elements and cooling rate, the alloys occurred in an either amorphous or mixed amorphous-crystalline state. Mechanical properties of the obtained alloys have been measured.
Physics of Metals and Metallography | 2014
V. G. Pushin; N. I. Kourov; N. N. Kuranova; A. V. Pushin; A. N. Uksusnikov
The results of a complex study of ternary TiNiFe alloys with a low-temperature shape-memory effect subjected to megaplastic deformation by high-pressure torsion (HPT) with subsequent heat treatment are presented. Investigations have been performed using X-ray diffraction, transmission and scanning electron microscopy, and measurements of electrical properties. It has been established that, at moderate degrees of reduction, the plastic deformation in the Ti50Ni49Fe1 alloy induces a B2 ↔ B19′ thermoelastic martensitic transformation and the formation of a developed banded dislocation and twin structure in the B19′ martensite; in the Ti50Ni47Fe3 alloy, a mainly analogous dislocation substructure is formed, but in the B2 austenite. The megaplastic deformation by HPT at room temperature leads to the amorphization of the Ti50Ni49Fe1 alloy and to the high-angle nanofragmentation of the Ti50Ni47Fe3 alloy. Specific features of the evolution of the structure and martensitic transformations in the TiNiFe ternary alloys after plastic deformation and heat treatment have been established. It has been found that the heat treatment of both alloys after HPT at temperatures of 553–773 K results in the formation of a nanocrystalline or mixed nano-submicro-crystalline structure.
Technical Physics | 2012
V. G. Pushin; N. N. Kuranova; N. I. Kourov; Ruslan Z. Valiev; E. Z. Valiev; V. V. Makarov; A. V. Pushin; A. N. Uksusnikov
The effects of a high pressure and torsional plastic deformation in Bridgman anvils on the structure and phase transformations in titanium nickelide-based shape memory alloys are studied by electron microscopy, neutron diffraction, and X-ray diffraction. The physical properties of the alloys are measured. It is found that the baroelastic effects related to the highly reversible B2 ↔ B19′ martensitic transformation can occur in metastable austenitic titanium nickelide alloys in both the standard polycrystalline and nanocrystalline states under high pressure.