A. V. Sushkov
Kurchatov Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. V. Sushkov.
Nuclear Fusion | 1999
A. Pochelon; T. P. Goodman; M. A. Henderson; C. Angioni; R. Behn; S. Coda; F. Hofmann; J. P. Hogge; N. Kirneva; A.A. Martynov; J.-M. Moret; Z. A. Pietrzyk; F. Porcelli; H. Reimerdes; J. Rommers; Enrico Rossi; O. Sauter; M.Q. Tran; H. Weisen; S. Alberti; S. Barry; P. Blanchard; P. Bosshard; R. Chavan; B.P. Duval; Y.V. Esipchuck; D. Fasel; A. Favre; S. Franke; I. Furno
Confinement in TCV electron cyclotron heated discharges was studied as a function of plasma shape, i.e. as a function of elongation, 1.1 < kappa < 2.15, and triangularity, -0.65 less than or equal to delta less than or equal to 0.55. The electron energy confinement time was found to increase with elongation, owing in part to the increase of plasma current with elongation. The beneficial effect of negative triangularities was most effective at low power and tended to decrease at the higher powers used. The large variety of sawtooth types observed in TCV for different power deposition locations, from on-axis to the q = 1 region, was simulated with a model that included local power deposition, a growing m/n = 1 island (convection and reconnection), plasma rotation and finite heat diffusivity across flux surfaces. Furthermore, a model with local magnetic shear reproduced the experimental observation that the sawtooth period is at a maximum when the heating is close to the q = 1 surface.
Nuclear Fusion | 2003
T. P. Goodman; S.M. Ahmed; S. Alberti; Y. Andrebe; C. Angioni; K. Appert; G. Arnoux; R. Behn; P. Blanchard; P. Bosshard; Y. Camenen; R. Chavan; S. Coda; I. Condrea; A. W. Degeling; B.P. Duval; P. Etienne; D. Fasel; A. Fasoli; J.-Y. Favez; I. Furno; M. A. Henderson; F. Hofmann; J.-P. Hogge; J. Horacek; P. Isoz; B. Joye; I. Klimanov; P. Lavanchy; J.B. Lister
The Tokamak Configuration Variable (TCV) tokamak (R = 0.88 m, a < 0.25 m, B < 1.54 T) programme is based on flexible plasma shaping and heating for studies of confinement, transport, control and power exhaust. Recent advances in fully sustained off-axis electron cyclotron current drive (ECCD) scenarios have allowed the creation of plasmas with high bootstrap fraction, steady-state reversed central shear and an electron internal transport barrier. High elongation plasmas, kappa = 2.5, are produced at low normalized current using far off-axis electron cyclotron heating and ECCD to broaden the current profile. Third harmonic heating is used to heat the plasma centre where the second harmonic is in cut-off. Both second and third harmonic heating are used to heat H-mode plasmas, at the edge and centre, respectively. The ELM frequency is decreased by the additional power. In separate experiments, the ELM frequency can be affected by locking to an external perturbation current in the internal coils of TCV. Spatially resolved current profiles are measured at the inner and outer divertor targets by Langmuir probe arrays during ELMs. The strong, reasonably balanced currents are thought to be thermoelectric in origin.
Nuclear Fusion | 1997
D.A. Kislov; V. V. Alikaev; Yu. V. Esipchuk; A.M. Kakurtn; A. Ya. Kislov; D.A. Martynov; G. E. Notkin; K. A. Razumova; A. V. Sushkov; V.V. Volkov
Experiments on m=2, n=1 tearing mode suppression and on avoidance of density limit disruptions by electron cyclotron resonance heating (ECRH) were performed on the T-10 tokamak. Partial suppression of the m=2, n=1 mode by the high frequency (HF) power deposition in the vicinity of the q=2 surface was observed. Development of external kink modes with HF power injection can result in m=2, n=1 mode destabilization under specific operating conditions. ECRH suppresses m=2, n=1 mode activity at extremely high values of electron densities and prevents the density limit disruptions practically independently of EC resonance position. Complete compensation of the additional peripheral heat losses near the density limit by ECRH should be responsible for this result. No effect of electron cyclotron current drive (ECCD) on m=2, n=1 mode stability has been observed because of insufficient values of HF driven current in the vicinity of the q=2 surface under the operating conditions of the experiment
Plasma Physics and Controlled Fusion | 2000
S. Coda; T. P. Goodman; M. A. Henderson; F. Hofmann; Z. A. Pietrzyk; O. Sauter; S. Alberti; C. Angioni; K. Appert; R. Behn; P. Blanchard; P. Bosshard; R. Chavan; A. W. Degeling; B.P. Duval; D. Fasel; A. Favre; I. Furno; P. Gomez; P. Gorgerat; J. P. Hogge; P.-F. Isoz; B. Joye; P. Lavanchy; J.B. Lister; X. Llobet; J.-C. Magnin; A. Manini; B. Marlétaz; P. Marmillod
Experiments with high-power electron cyclotron heating (ECH) and current drive (ECCD) in the TCV tokamak are discussed. Power up to 2.7 MW from six gyrotrons is delivered to the tokamak at the second-harmonic frequency (82.7 GHz) in X-mode. The power is transmitted to the plasma by six independent launchers, each equipped with steerable mirrors that allow a wide variety of injection angles in both the poloidal and toroidal directions. Fully non-inductive operation of the tokamak has been achieved in steady state, for the full 2 s gyrotron pulse duration, by co-ECCD with a highest current to date of 210 kA at full power. The experimentally measured ECCD efficiency agrees well with predictions obtained from linear modelling. We have observed that the highest global efficiency attainable at a given power is limited by stability constraints. While the efficiency is maximum on the magnetic axis, a disruptive MHD instability occurs when the width of the deposition profile is lower than a minimum value, which increases with total power. Many ECCD discharges display a high level of electron energy confinement, enhanced by up to a factor of two over the Rebut-Lallia-Watkins (RLW) scaling law, which by contrast is well satisfied in ohmic conditions. The longest confinement times (up to four times RLW) are observed with central counter-ECCD. Central electron heat diffusivities comparable to ohmic levels are obtained in these scenarios, with electron temperatures in excess of 10 keV.
Plasma Physics and Controlled Fusion | 2004
V F Andreev; Yu. N. Dnestrovskij; M V Ossipenko; K. A. Razumova; A. V. Sushkov
Analysis of experiments with electron cyclotron resonance heating (ECRH) requires a good knowledge of the ECRH power profile. This profile is reconstructed by analysis of the transient process after on-axis ECRH switching on in special experiments with suppressed sawtooth oscillations in the T-10 tokamak. The calculations show that the absorbed ECRH power, , determined by the change in time derivative of the electron temperature at the region of ECRH power input, and the absorbed ECRH power, , determined by the magnetic measurements, are several times different. Depending on the plasma density and plasma current, their relation, , changes from 0.2 to 0.4. Analysis of different explanations for this effect shows that adequate description of the transient process demands introduction of a ballistic jump in the total heat flux just after on-axis ECRH switching on. The effective heat diffusivity increases up to values of 10?15?m2?s?1 in the first 100?200??s and decreases down to values of 1.5?2.0?m2?s?1 during the following 1?2?ms. Note that such a non-monotone dependence of the effective heat diffusivity cannot be described by the modern critical gradient models. It seems that plasma reacts directly to the deposited power but not to the corresponding consequences (the increase in temperature or gradients). Different physical mechanisms could be proposed for this process (partial destruction of magnetic surfaces, fast transition of information through the turbulent cell connections), but each of them needs further confirmation.
Plasma Physics and Controlled Fusion | 2000
K. A. Razumova; V. V. Alikaev; A. A. Borschegovskii; V. V. Chistyakov; M. M. Dremin; A.V. Gorshkov; A. Ya. Kislov; D.A. Kislov; S. V. Krylov; S.E. Lysenko; T. B. Myalton; G. E. Notkin; V.I. Poznyak; Yu.D. Pavlov; I N Roy; P. V. Savrukhin; A. V. Sushkov; V. V. Sannikov; S V Soldatov; V.A. Vershkov
The plasma stability and confinement have been investigated through control of the safety factor profile q(r) by the electron cyclotron current drive in the T-10 tokamak. The regimes with dq/dr0 and dq/dr<0 in the plasma core were obtained. Various types of MHD activity were observed: ordinary sawtooth, saturated sawtooth, humpbacks, hills etc. It was shown that when the minimal value qmin increases from qmin <1 to qmin = 2 the plasma becomes strongly unstable due to the corresponding MHD activity or passes to the steady-state improved confinement mode. The latter is realized when the electron internal transport barrier (EITB) is formed. The condition for the appearance of the EITB is dq/dr0, where q = m/n lies near a rational value for low m and n.
Nuclear Fusion | 1995
V. V. Alikaev; A.A. Bagdasarov; A.A. Borshegovskij; V. V. Chistyakov; M. M. Dremin; Yu.A. Gorelov; A.V. Gorshkov; Yu. V. Esipchuk; D.B. Evdokimov; A. Ya. Kislov; D.A. Kislov; V.A. Krupin; L. K. Kuznetsova; S.E. Lysenko; G. E. Notkin; Yu.D. Pavlov; V.I. Poznyak; K. A. Razumova; I.N. Roj; P.V. Savrukhin; V. V. Sannikov; A. V. Sushkov; V.M. Trukhin; N.L. Vasin; V.A. Vershkov; G.G. Denisov; V.I. Belousov; V.A. Flyagin; C. B. Forest; J. Lohr
Results of the electron cyclotron current drive experiment at the second harmonic resonance on the T-10 tokamak are presented. High frequency (HF) power up to 1.2 MW was launched from the low field side. A maximum driven current of 35 kA and current drive efficiency ηCD = 0.05 A/W at an electron temperature Tc(O) = 4 keV and a density nc(0) = 1 × 1013 cm-3 were obtained. For low HF power, the current drive efficiency was less than predicted by the linear theory unless the effect of the elliptical polarization from non-perpendicular injection is considered, in which case the efficiency is close to the theoretical value. The experimental dependence of HF on the absorbed HF power indicated a strong increase of ηCD with power. Suppression of sawtooth oscillations and improvement of confinement during electron cyclotron heating has also been demonstrated
Nuclear Fusion | 2004
K. A. Razumova; A. J. H. Donné; V F Andreev; G. M. D. Hogeweij; I.S. Bel'bas; A.A. Borschegovskij; A. Yu. Dnestrovskij; V. V. Chistyakov; R. Jaspers; A. Ya. Kislov; Vladimir I. Ilin; D.A. Krupin; S.V. Krylov; D.E. Kravtsov; Y. Liang; S.E. Lysenko; M.V. Maslov; E. Min; T.B. Myalton; G. E. Notkin; M.V. Ossipenko; V.V. Piterskij; D.P. Petrov; I. N. Roi; D.V. Ryzhakov; D. A. Shelukhin; A. V. Sushkov; V.M. Trukhin; V.A. Vershkov; E. Westerhof
It has been observed in the T-10 tokamak that immediately after off-axis electron cyclotron resonance heating (ECRH) switch-off, the core electron temperature stays constant for some time, which can be as long as several tens of milliseconds, i.e. several energy confinement times (τE), before it starts to decrease. Whether or not the effect is observed depends critically on the local magnetic shear in the vicinity of the q = 1 rational surface, which should be close to zero. It is hypothesized that a small shear can induce the formation of an internal transport barrier. Measurements of density fluctuations in the transport barrier with a correlation reflectometer show immediately after the ECRH switch-off a clear reduction in the fluctuation level, corroborating the above results. The delayed temperature decrease has also been observed in similar discharges in the TEXTOR tokamak; however, the delay is restricted to ~ 1 × τE.
Review of Scientific Instruments | 2008
A. V. Sushkov; V F Andreev; Y. Camenen; A. Pochelon; I. Klimanov; A. Scarabosio; H. Weisen
A multiwire proportional x-ray (MPX) detector is used on the TCV tokamak (Tokamak à configuration variable) as a high spatial and temporal resolution soft x-ray emissivity imaging diagnostic. The MPX system consists of 64 vertically viewing channels and has been designed to complement the existing TCV soft x-ray tomography system by enhancing the spatial resolution. The MPX detector is suitable for the measurement of fast and localized phenomena and can be used, for instance, for the observation of magnetohydrodynamic activity, for the characterization of transport barriers or for an improved determination of the electron cyclotron heating power deposition profile. The MPX detector operates in continuous-current mode and measures the plasma soft x-ray emission in the 3-30 keV range with a radial resolution of about 5 mm-1% of plasma diameter--and a frequency bandwidth of 50 kHz. A detailed description of the MPX detector construction and the principle of its operation are given. The properties of the detector in photon-counting and continuous-current operation modes are studied. The implementation of the system on TCV and experimental results illustrating the potential of the diagnostic are also presented.
Plasma Physics and Controlled Fusion | 2005
T. P. Goodman; R Behn; Y Camenen; S. Coda; E Fable; M. A. Henderson; P Nikkola; Jx Rossel; O. Sauter; A Scarabosio; C. Zucca; S. Alberti; P Amorim; Y Andrebe; K Appert; G. Arnoux; A Bortolon; A Bottino; R Chavan; I Condrea; E Droz; B P Duval; P Etienne; D Fasel; A. Fasoli; B. Gulejova; J.P. Hogge; J. Horacek; P-F Isoz; B Joye
On the TokamakConfiguration Variable (TCV), electron internal transport barriers (eITBs) can be formed during a gradual evolution from a centrally peaked to a hollow current profile while all external actuators are held constant. The formation occurs rapidly (<τeE) and locally and, according to ASTRA modelling, is consistent with the appearance of a local minimum in the safety factor (q) profile. The eITB is sustained by non-inductively driven currents (including the off-axis bootstrap current) for many current redistribution times while the current in the tokamak transformer is held constant. The maximum duration is limited by the pulse length of the gyrotrons. The transformer coil can be used as a counter (or co-) current source with negligible accompanying input power. In established eITBs the performance can be enhanced (degraded) by altering solely the central current or q-profile. New experiments show that the same stationary eITB performance can be reached starting from discharges with centrally peaked current. A fine scan in surface voltage shows a smooth increase in performance and no sudden improvement with voltage despite the fact that qmin must pass through several low-order rational values. The appearance, in