Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A W Langerak is active.

Publication


Featured researches published by A W Langerak.


Leukemia | 2003

Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936.

J J M van Dongen; A W Langerak; Monika Brüggemann; Paul Anthony Stuart Evans; Michael Hummel; Frances Louise Lavender; Eric Delabesse; Frederic Davi; Eduardus Maria Dominicus Schuuring; Ramón García-Sanz; J.H.J.M. van Krieken; J Droese; D. González; Christian Bastard; Helen E. White; Marcel Spaargaren; González M; Antonio Parreira; J. L. Smith; Gareth J. Morgan; Michael Kneba; Elizabeth Macintyre

In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH–JH, two DH–JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH–JH and DH–JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRγδ+ T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.


Leukemia | 2012

EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes

J J M van Dongen; L Lhermitte; S Böttcher; Julia Almeida; V H J van der Velden; Juan Flores-Montero; Andy C. Rawstron; Vahid Asnafi; Quentin Lecrevisse; Paulo Lúcio; Ester Mejstrikova; T Szczepanski; Tomáš Kalina; R de Tute; Monika Brüggemann; Lukasz Sedek; Matthew Cullen; A W Langerak; Alexandre de Mendonça; E Macintyre; Marta Martin-Ayuso; Ondřej Hrušák; M B Vidriales; Alberto Orfao

Most consensus leukemia & lymphoma antibody panels consist of lists of markers based on expert opinions, but they have not been validated. Here we present the validated EuroFlow 8-color antibody panels for immunophenotyping of hematological malignancies. The single-tube screening panels and multi-tube classification panels fit into the EuroFlow diagnostic algorithm with entries defined by clinical and laboratory parameters. The panels were constructed in 2–7 sequential design–evaluation–redesign rounds, using novel Infinicyt software tools for multivariate data analysis. Two groups of markers are combined in each 8-color tube: (i) backbone markers to identify distinct cell populations in a sample, and (ii) markers for characterization of specific cell populations. In multi-tube panels, the backbone markers were optimally placed at the same fluorochrome position in every tube, to provide identical multidimensional localization of the target cell population(s). The characterization markers were positioned according to the diagnostic utility of the combined markers. Each proposed antibody combination was tested against reference databases of normal and malignant cells from healthy subjects and WHO-based disease entities, respectively. The EuroFlow studies resulted in validated and flexible 8-color antibody panels for multidimensional identification and characterization of normal and aberrant cells, optimally suited for immunophenotypic screening and classification of hematological malignancies.


Leukemia | 1997

Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations.

A W Langerak; Tomasz Szczepański; M.E.L. van der Burg; Ilm Wolvers-Tettero; Jjm van Dongen

Molecular analysis of T cell receptor (TCR) genes is frequently used to prove or exclude clonality and thereby support the diagnosis of suspect T cell proliferations. PCR techniques are more and more being used for molecular clonality studies. The main disadvantage of the PCR-based detection of clonal TCR gene rearrangements, is the risk of false-positive results due to ‘background’ amplification of similar rearrangements in polyclonal reactive T lymphocytes. Therefore, PCR-based clonality assessment should include analyses that discern between PCR products derived from monoclonal and polyclonal cell populations. One such method is heteroduplex analysis, in which homo- and heteroduplexes resulting from denaturation (at 94°C) and renaturation (at lower temperatures) of PCR products, are separated in non-denaturing polyacrylamide gels based on their conformation. After denaturation/renaturation, PCR products of clonally rearranged TCR genes give rise to homoduplexes, whereas in case of polyclonal cells heteroduplexes with heterogeneous junctions are formed. We studied heteroduplex PCR analysis of TCR gene rearrangements with respect to the time and temperature of renaturation and the size of the PCR products. Variation in time did not have much influence, but higher renaturation temperatures (>30°C) clearly showed better duplex formation. Nevertheless, distinction between monoclonal and polyclonal samples was found to be more reliable at a renaturation temperature of 4°C, using relatively short PCR products. To determine the sensitivity of heteroduplex analysis with renaturation at 4°C, (c)DNA of T cell malignancies with proven clonal rearrangements was serially diluted in (c)DNA of polyclonal mononuclear peripheral blood cells and amplified using V and C primers (TCRB genes) or V and J primers (TCRG and TCRD genes). Clonal TCRB and TCRD gene rearrangements could be detected with a sensitivity of at least 5%, whereas the sensitivity for TCRG genes was somewhat lower (10–15%). The latter could be improved by use of Vγ member primers instead of Vγfamily primers. We conclude from our results that heteroduplex PCR analysis of TCR gene rearrangements is a simple, rapid and cheap alternative to Southern blot analysis for detection of clonally rearranged TCR genes.


Leukemia | 2012

EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations

A W Langerak; Patricia J. T. A. Groenen; Monika Brüggemann; Kheira Beldjord; C. Bellan; Lisa Bonello; E. Boone; G. I. Carter; M. Catherwood; Frederic Davi; Marie-Hélène Delfau-Larue; Tim C. Diss; Paul Anthony Stuart Evans; Paula Gameiro; R Garcia Sanz; D. Gonzalez; D. Grand; A. Håkansson; M. Hummel; Hongxiang Liu; L. Lombardia; Elizabeth Macintyre; B. J. Milner; S. Montes-Moreno; Eduardus Maria Dominicus Schuuring; Marcel Spaargaren; Elizabeth Hodges; J J M van Dongen

PCR-based immunoglobulin (Ig)/T-cell receptor (TCR) clonality testing in suspected lymphoproliferations has largely been standardized and has consequently become technically feasible in a routine diagnostic setting. Standardization of the pre-analytical and post-analytical phases is now essential to prevent misinterpretation and incorrect conclusions derived from clonality data. As clonality testing is not a quantitative assay, but rather concerns recognition of molecular patterns, guidelines for reliable interpretation and reporting are mandatory. Here, the EuroClonality (BIOMED-2) consortium summarizes important pre- and post-analytical aspects of clonality testing, provides guidelines for interpretation of clonality testing results, and presents a uniform way to report the results of the Ig/TCR assays. Starting from an immunobiological concept, two levels to report Ig/TCR profiles are discerned: the technical description of individual (multiplex) PCR reactions and the overall molecular conclusion for B and T cells. Collectively, the EuroClonality (BIOMED-2) guidelines and consensus reporting system should help to improve the general performance level of clonality assessment and interpretation, which will directly impact on routine clinical management (standardized best-practice) in patients with suspected lymphoproliferations.


Leukemia | 2005

CALM-AF10 + T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes

W A Dik; Wajih Brahim; C Braun; Vahid Asnafi; N Dastugue; O A Bernard; J J M van Dongen; A W Langerak; E Macintyre; Eric Delabesse

The t(10;11)(p13;q14–21) is found in T-ALL and acute myeloid leukemia and fuses CALM (Clathrin-Assembly protein-like Lymphoid-Myeloid leukaemia gene) to AF10. In order to gain insight into the transcriptional consequences of this fusion, microarray-based comparison of CALM-AF10+ vs CALM-AF10− T-ALL was performed. This analysis showed upregulation of HOXA5, HOXA9, HOXA10 and BMI1 in the CALM-AF10+ cases. Microarray results were validated by quantitative RT-PCR on an independent group of T-ALL and compared to mixed lineage leukemia-translocated acute leukemias (MLL-t AL). The overexpression of HOXA genes was associated with overexpression of its cofactor MEIS1 in CALM-AF10+ T-ALL, reaching levels of expression similar to those observed in MLL-t AL. Consequently, CALM-AF10+ T-ALL and MLL-t AL share a specific HOXA overexpression, indicating they activate common oncogenic pathways. In addition, BMI1, located close to AF10 breakpoint, was overexpressed only in CALM-AF10+ T-ALL and not in MLL-t AL. BMI1 controls cellular proliferation through suppression of the tumor suppressors encoded by the CDKN2A locus. This locus, often deleted in T-ALL, was conserved in CALM-AF10+ T-ALL. This suggests that decreased CDKN2A activity, as a result of BMI1 overexpression, contributes to leukemogenesis in CALM-AF10+ T-ALL. We propose to define a HOXA+ leukemia group composed of at least MLL-t, CALM-AF10 and HOXA-t AL, which may benefit from adapted management.


Leukemia | 2005

Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL

Grzegorz K. Przybylski; W A Dik; J Wanzeck; Piotr Grabarczyk; S Majunke; José I. Martín-Subero; Reiner Siebert; G Dölken; W-D Ludwig; Brenda Verhaaf; J J M van Dongen; Christian A. Schmidt; A W Langerak

T-cell acute lymphoblastic leukemia (T-ALL) is associated with chromosomal aberrations characterized by juxtaposition of proto-oncogenes to T-cell receptor gene loci (TCR), resulting in the deregulated transcription of these proto-oncogenes. Here, we describe the molecular characterization of a novel chromosomal aberration, inv(14)(q11.2q32.31), in a T-ALL sample, involving the recently described BCL11B gene and the TCRD locus. The inversion joined the 5′ part of BCL11B, including exons 1–3, to the TRDD3 gene segment of the TCRD locus, whereas the reciprocal breakpoint fused the TRDV1 gene segment to the fourth exon of BCL11B. The TRDV1-BCL11B joining region was 1344 bp long and contained fragments derived from 20q11.22, 3p21.33 and from 11p12, indicating the complex character of this aberration. A strong expression of in-frame transcripts with truncated BCL11B and TCRD constant region (TRDC) were observed, but in contrast to normal T cells and other T-ALL samples, no wild-type BCL11B transcripts were detected in the T-ALL sample. Screening of 37 other T-ALLs revealed one additional case with expression of the BCL11B-TRDC fusion transcript. As BCL11B appears to play a key role in T-cell differentiation, BCL11B disruption and disturbed expression may contribute to the development of T-cell malignancies in man.


Leukemia | 2008

Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences

M. van Grotel; Jules P.P. Meijerink; E. R. Van Wering; A W Langerak; H B Beverloo; Jessica Buijs-Gladdines; N. B. Burger; M. Passier; E. M. M. Van Lieshout; Willem A. Kamps; Anjo J. P. Veerman; M.M. van Noesel; Rob Pieters

Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is characterized by chromosomal rearrangements possibly enforcing arrest at specific development stages. We studied the relationship between molecular-cytogenetic abnormalities and T-cell development stage to investigate whether arrest at specific stages can explain the prognostic significance of specific abnormalities. We extensively studied 72 pediatric T-ALL cases for genetic abnormalities and expression of transcription factors, NOTCH1 mutations and expression of specific CD markers. HOX11 cases were CD1 positive consistent with a cortical stage, but as 4/5 cases lacked cytoplasmatic-β expression, developmental arrest may precede β-selection. HOX11L2 was especially confined to immature and pre-AB developmental stages, but 3/17 HOX11L2 mature cases were restricted to the γδ-lineage. TAL1 rearrangements were restricted to the αβ-lineage with most cases being TCR-αβ positive. NOTCH1 mutations were present in all molecular-cytogenetic subgroups without restriction to a specific developmental stage. CALM-AF10 was associated with early relapse. TAL1 or HOX11L2 rearrangements were associated with trends to good and poor outcomes, respectively. Also cases with high vs low TAL1 expression levels demonstrated a trend toward good outcome. Most cases with lower TAL1 levels were HOX11L2 or CALM-AF10 positive. NOTCH1 mutations did not predict for outcome. Classification into T-cell developmental subgroups was not predictive for outcome.


Leukemia | 1998

Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease

Tomasz Szczepański; A W Langerak; Ingrid L. M. Wolvers-Tettero; G.J. Ossenkoppele; G. Verhoef; Michel Stul; E. J. Petersen; M. A. C. De Bruijn; M. B. Van't Veer; J J M van Dongen

In order to gain insight into immunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements in adult acute lymphoblastic leukemia (ALL), we studied 48 adult patients: 26 with precursor-B-ALL and 22 with T-ALL. Southern blotting (SB) with multiple DNA probes for the IGH, IGK, TCRB, TCRG, TCRD and TAL1 loci revealed rearrangement patterns largely comparable to pediatric ALL, but several differences were found for precursor-B-ALL patients. Firstly, adult patients showed a lower level of oligoclonality in the IGH gene locus (five out of 26 patients; 19%) despite a comparable incidence of IGH gene rearrangements (24 out of 26 patients; 92%). Secondly, all detected IGK gene deletions (n = 12) concerned rearrangements of the kappa deleting element (Kde) to Vκ gene segments, which represent two-thirds of the Kde rearrangements in pediatric precursor-B-ALL and only half of the Kde rearrangements in mature B cell leukemias. Thirdly, a striking predominance of immature Dδ2-Dδ3 cross-lineage recombinations was observed (seven out of 16 TCRD rearrangements; 44%), whereas more mature Vδ2-Dδ3 gene rearrangements occurred less frequently (six out of 16 TCRD rearrangements; 38% vs >70% in pediatric precursor-B-ALL). Together these data suggest that the Ig/TCR genotype of precursor-B-ALL is more immature and more stable in adults than in children. We also evaluated whether heteroduplex analysis of polymerase chain reaction (PCR) products of rearranged Ig and TCR genes can be used for identification of molecular targets for minimal residual disease (MRD) detection. Using five of the major gene targets (IGH, IGK, TCRG, TCRD and TAL1 deletion), we compared the SB data and heteroduplex PCR results. High concordance between the two methods ranging from 96 to 100% was found for IGK, TCRG and TAL1 genes. The concordance was lower for IGH (70%) and TCRD genes (90%), which may be explained by incomplete or ‘atypical’ rearrangements or by translocations detectable only by SB. Finally, the heteroduplex PCR data indicate, that MRD monitoring is possible in almost 90% of adult precursor-B-ALL and >95% of adult T-ALL patients.


Leukemia | 2003

DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: Choice of technique and purification influence the identification of potential diagnostic markers

F J T Staal; M.E.L. van der Burg; L F A Wessels; Barbara H. Barendregt; M.R.M. Baert; C M M van den Burg; A W Langerak; V H J van der Velden; Marcel J. T. Reinders; J J M van Dongen

Microarrays for gene expression profiling are rapidly becoming important research tools for the identification of novel markers, for example, for novel classification of leukemias and lymphomas. Here, we review the considerations and infrastructure for microarray experiments. These considerations are illustrated via a microarray-based comparison of gene expression profiles of paired diagnosis–relapse samples from patients with precursor-B acute lymphoblastic leukemia (ALL), who relapsed during therapy or after completion of treatment. Initial experiments showed that several seemingly differentially expressed genes were actually derived from contaminating non-leukemic cells, particularly myeloid cells and T-lymphocytes. Therefore, we purified the ALL cells of the diagnosis and relapse samples if their frequency was lower than 95%. Furthermore, we observed in earlier studies that extra RNA amplification leads to skewing of particular gene transcripts. Sufficient (non-amplified) RNA of purified and paired diagnosis–relapse samples was obtained from only seven cases. The gene expression profiles were evaluated with Affymetrix U95A chips containing 12 600 human genes. These diagnosis–relapse comparisons revealed only a small number of genes (n=6) that differed significantly in expression: mostly signaling molecules and transcription factors involved in cell proliferation and cell survival were highly upregulated at relapse, but we did not observe any increase in drug-resistance markers. This finding fits with the observation that tumors with a high proliferation index have a poor prognosis. The genes that changed between diagnosis and relapse are currently not in use as diagnostic or disease progression markers, but represent potential new markers for such applications.


Leukemia | 2013

Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia : the case of SF3B1 and subset #2

Jonathan C. Strefford; Lesley Ann Sutton; Panagiotis Baliakas; Andreas Agathangelidis; Jitka Malčíková; Karla Plevová; Lydia Scarfò; Zadie Davis; Evangelia Stalika; Diego Cortese; Nicola Cahill; Lone Bredo Pedersen; P. F. Di Celle; Tatiana Tzenou; Christian H. Geisler; Panagiotis Panagiotidis; A W Langerak; Nicholas Chiorazzi; Šárka Pospíšilová; David Oscier; Frederic Davi; Chrysoula Belessi; Larry Mansouri; Paolo Ghia; Kostas Stamatopoulos; Richard Rosenquist

Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.

Collaboration


Dive into the A W Langerak's collaboration.

Top Co-Authors

Avatar

J J M van Dongen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jjm van Dongen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

M.E.L. van der Burg

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

H B Beverloo

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Yorick Sandberg

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Agathangelidis

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Karla Plevová

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

V H J van der Velden

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

E. R. Van Wering

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge