Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Waters is active.

Publication


Featured researches published by A Waters.


Pediatric Nephrology | 2011

Ciliopathies: an expanding disease spectrum

A Waters; Philip L. Beales

Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features.


Nature Genetics | 2011

Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome

Caroline Rooryck; Anna Diaz-Font; Daniel P.S. Osborn; Elyes Chabchoub; Victor Hernandez-Hernandez; Hanan E. Shamseldin; Joanna Kenny; A Waters; Dagan Jenkins; Ali Al Kaissi; Gabriela F Leal; Bruno Dallapiccola; Franco Carnevale; Maria Bitner-Glindzicz; Melissa Lees; Raoul C. M. Hennekam; Philip Stanier; Alan J. Burns; Hilde Peeters; Fowzan S. Alkuraya; Philip L. Beales

3MC syndrome has been proposed as a unifying term encompassing the overlapping Carnevale, Mingarelli, Malpuech and Michels syndromes. These rare autosomal recessive disorders exhibit a spectrum of developmental features, including characteristic facial dysmorphism, cleft lip and/or palate, craniosynostosis, learning disability and genital, limb and vesicorenal anomalies. Here we studied 11 families with 3MC syndrome and identified two mutated genes, COLEC11 and MASP1, both of which encode proteins in the lectin complement pathway (collectin kidney 1 (CL-K1) and MASP-1 and MASP-3, respectively). CL-K1 is highly expressed in embryonic murine craniofacial cartilage, heart, bronchi, kidney and vertebral bodies. Zebrafish morphants for either gene develop pigmentary defects and severe craniofacial abnormalities. Finally, we show that CL-K1 serves as a guidance cue for neural crest cell migration. Together, these findings demonstrate a role for complement pathway factors in fundamental developmental processes and in the etiology of 3MC syndrome.


Emerging Infectious Diseases | 2005

Childhood Hemolytic Uremic Syndrome, United Kingdom and Ireland

Richard M. Lynn; Sarah J. O'Brien; C. Mark Taylor; G. K. Adak; Henrik Chart; T. Cheasty; John E. Coia; Iain A. Gillespie; Mary E. Locking; W.J. Reilly; Henry Smith; A Waters; Geraldine A. Willshaw

The risk for diarrhea-associated HUS was higher for children infected with Escherichia coli O157 phage type (PT) 2 and PT21/28 than for those infected with other PTs.


The New England Journal of Medicine | 2012

Integrin α3 mutations with kidney, lung, and skin disease.

Cristina Has; Giuseppina Spartà; Dimitra Kiritsi; Lisa Weibel; Alexander Moeller; Virginia Vega-Warner; A Waters; Yinghong He; Yair Anikster; Philipp R. Esser; Beate K. Straub; Ingrid Hausser; Detlef Bockenhauer; Benjamin Dekel; Friedhelm Hildebrandt; Leena Bruckner-Tuderman; Guido F. Laube

Integrin α(3) is a transmembrane integrin receptor subunit that mediates signals between the cells and their microenvironment. We identified three patients with homozygous mutations in the integrin α(3) gene that were associated with disrupted basement-membrane structures and compromised barrier functions in kidney, lung, and skin. The patients had a multiorgan disorder that included congenital nephrotic syndrome, interstitial lung disease, and epidermolysis bullosa. The renal and respiratory features predominated, and the lung involvement accounted for the lethal course of the disease. Although skin fragility was mild, it provided clues to the diagnosis.


Pediatric Nephrology | 2011

aHUS caused by complement dysregulation: new therapies on the horizon

A Waters; Christoph Licht

Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.


Journal of The American Society of Nephrology | 2008

Ectopic Notch Activation in Developing Podocytes Causes Glomerulosclerosis

A Waters; Megan Y.J. Wu; Tuncer Onay; Jacob Scutaru; Ju Liu; Corrinne G. Lobe; Susan E. Quaggin; Tino D. Piscione

Genetic evidence supports an early role for Notch signaling in the fate of podocytes during glomerular development. Decreased expression of Notch transcriptional targets in developing podocytes after the determination of cell fate suggests that constitutive Notch signaling may oppose podocyte differentiation. This study determined the effects of constitutive Notch signaling on podocyte differentiation by ectopically expressing Notchs intracellular domain (NOTCH-IC), the biologically active, intracellular product of proteolytic cleavage of the Notch receptor, in developing podocytes of transgenic mice. Histologic and molecular analyses revealed normal glomerular morphology and expression of podocyte markers in newborn NOTCH-IC-expressing mice; however, mice developed severe proteinuria and showed evidence of progressive glomerulosclerosis at 2 wk after birth. Features of mature podocytes were lost: Foot processes were effaced; expression of Wt1, Nphs1, and Nphs2 was downregulated; cell-cycle re-entry was induced; and the expression of Pax2 was increased. In contrast, mice with podocyte-specific inactivation of Rbpsuh, which encodes a protein essential for canonical Notch signaling, seemed normal. In addition, the damaging effects of NOTCH-IC expression were prevented in transgenic mice after simultaneous conditional inactivation of Rbpsuh in murine podocytes. These results suggest that Notch signaling is dispensable during terminal differentiation of podocytes but that constitutive (or inappropriate) Notch signaling is deleterious, leading to glomerulosclerosis.


American Journal of Transplantation | 2010

Successful Renal Transplantation in Factor H Autoantibody Associated HUS with CFHR1 and 3 Deficiency and CFH Variant G2850T

A Waters; Isabel Y. Pappworth; Kevin J. Marchbank; Detlef Bockenhauer; Kjell Tullus; Matthew C. Pickering; Lisa Strain; Nj Sebire; Rukshana Shroff; Stephen D. Marks; Timothy H.J. Goodship; Lesley Rees

Factor H (CFH) autoantibodies are associated with atypical hemolytic uremic syndrome (aHUS). Peritransplantation plasma exchange therapy and intensification of immunosuppression, with adjuvant use of anti‐CD20 monoclonal antibodies has recently been advocated for cases of CFH‐autoantibody associated aHUS. In this report, we describe successful deceased donor renal transplantation in a case of CFH‐autoantibody associated aHUS with combined CFHR1 and 3 deficiency in addition to the CFH sequence variant, (cG2850T, pGln950His). CFH‐autoantibodies were detected 2 weeks prior to transplantation. Disease recurrence was not observed using basiliximab, an IL2‐receptor antagonist and high‐dose corticosteroids with mycophenolate mofetil. Adjuvant therapies such as Rituximab nor intensification of plasma therapy were employed. Consequently, careful consideration needs to be given to the use of additional immunosuppression in certain cases of CFH‐autoantibody associated aHUS. Serial measurement of CFH‐autoantibodies is required in the immediate pre‐ and posttransplantation period to further clarify their role as a factor in the recurrence of aHUS posttransplantation. Furthermore, delineation of the functional significance of CFH‐autoantibodies is warranted in individual cases.


Journal of Immunological Methods | 2012

An enzyme-linked immunosorbent assay (ELISA) for quantification of human collectin 11 (CL-11, CL-K1)

Lana Selman; Maiken Lumby Henriksen; Jette Brandt; Yaseelan Palarasah; A Waters; Philip L. Beales; Uffe Holmskov; Thomas J. D. Jørgensen; Christian Nielsen; Karsten Skjødt; Søren Hansen

Collectin 11 (CL-11), also referred to as collectin kidney 1 (CL-K1), is a pattern recognition molecule that belongs to the collectin group of proteins involved in innate immunity. It interacts with glycoconjugates on pathogen surfaces and has been found in complex with mannose-binding lectin-associated serine protease 1 (MASP-1) and/or MASP-3 in circulation. Mutation in the CL-11 gene was recently associated with the developmental syndrome 3MC. In the present study, we established and thoroughly validated a sandwich enzyme-linked immunosorbent assay (ELISA) based on two different monoclonal antibodies. The assay is highly sensitive, specific and shows excellent quantitative characteristics such as reproducibility, dilution linearity and recovery (97.7–104%). The working range is 0.15–34 ng/ml. The CL-11 concentration in two CL-11-deficient individuals affected by the 3MC syndrome was determined to be below 2.1 ng/ml. We measured the mean serum CL-11 concentration to 284 ng/ml in 100 Danish blood donors, with a 95% confidence interval of 269–299 ng/ml. There was no significant difference in the CL-11 concentration measured in matched serum and plasma samples. Storage of samples and repeated freezing and thawing to a certain extent did not influence the ELISA. This ELISA offers a convenient and reliable method for studying CL-11 levels in relation to a variety of human diseases and syndromes.


Journal of Medical Genetics | 2015

The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes

A Waters; Paula Carroll; Louise S. Bicknell; Francesco Lescai; Alison Bright; Estelle Chanudet; Anthony Brooks; Sonja Christou-Savina; Guled Osman; Patrick Walsh; Chiara Bacchelli; Ariane Chapgier; Bertrand Vernay; David M. Bader; Charu Deshpande; Mary O’ Sullivan; Louise Ocaka; Horia Stanescu; Helen Stewart; Friedhelm Hildebrandt; Edgar A. Otto; Colin A. Johnson; Katarzyna Szymanska; Nicholas Katsanis; Erica E. Davis; Robert Kleta; Mike Hubank; Andrew M. Jackson; Elia Stupka; Mark Winey

Background Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. Methods and results Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. Conclusions Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.


Journal of Medical Genetics | 2012

A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis

Yifat Zivony-Elboum; Wendy Westbroek; Nehama Kfir; David Savitzki; Yishay Shoval; Assnat Bloom; Raya Rod; Morad Khayat; Bella Gross; Walid Samri; Hector I. Cohen; Vadim Sonkin; Tatiana Freidman; Dan Geiger; Aviva Fattal-Valevski; Yair Anikster; A Waters; Robert Kleta; Tzipora C. Falik-Zaccai

Background Members of two seemingly unrelated kindreds of Arab Moslem origin presented with pronounced early onset spastic paraparesis of upper and lower limbs, mild intellectual disability, kyphosis, pectus carinatum and hypertrichosis. Methods The authors performed neurological and developmental examinations on the affected individuals. The authors conducted whole genome linkage and haplotype analyses, followed by sequencing of candidate genes; RNA and protein expression studies; and finally proof of principle investigations on knockdown morpholino oligonucleotide injected zebrafish. Results The authors characterise a novel form of autosomal recessive complex hereditary spastic paraparesis (CHSP). MRI studies of brain and spinal cord were normal. Within a single significantly linked locus the authors ultimately identified a homozygous missense mutation c.1146A>T (p.K382N) in the vacuolar protein sorting 37A (Vps37A) gene, fully penetrant and segregating with the disease in both families. Mobility was significantly reduced in Vps37A knockdown morpholino oligonucleotide injected zebrafish, supporting the causal relationship between mutations in this gene and the phenotype described in the patients of this study. Conclusions The authors provide evidence for the involvement of Vps37A, a member of the endosomal sorting complex required for transport (ESCRT) system, in upper motor neuron disease. The ESCRT system has been shown to play a central role in intracellular trafficking, in the maturation of multivesicular bodies and the sorting of ubiquitinated membrane proteins into internal luminal vesicles. Further investigation of mechanisms by which dysfunction of this gene causes CHSP will contribute to the understanding of intracellular trafficking of vesicles by the ESCRT machinery and its relevance to CHSP.

Collaboration


Dive into the A Waters's collaboration.

Top Co-Authors

Avatar

Nj Sebire

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kjell Tullus

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

L Rees

Great Ormond Street Hospital for Children NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Kleta

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge