Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Wayne Vogl is active.

Publication


Featured researches published by A. Wayne Vogl.


American Journal of Human Genetics | 2001

Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo

Blair R. Leavitt; Julian A. Guttman; J.Graeme Hodgson; Gil Kimel; Roshni R. Singaraja; A. Wayne Vogl; Michael R. Hayden

We have developed yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 or YAC72) human huntingtin (htt), in a developmental- and tissue-specific manner, that is identical to endogenous htt. YAC72 mice develop selective degeneration of medium spiny projection neurons in the lateral striatum, similar to what is observed in Huntington disease. Mutant human htt expressed by YAC transgenes can compensate for the absence of endogenous htt and can rescue the embryonic lethality that characterizes mice homozygous for targeted disruption of the endogenous Hdh gene (-/-). YAC72 mice lacking endogenous htt (YAC72 -/-) manifest a novel phenotype characterized by infertility, testicular atrophy, aspermia, and massive apoptotic cell death in the testes. The testicular cell death in YAC72 -/- mice can be markedly reduced by increasing endogenous htt levels. YAC72 mice with equivalent levels of both wild-type and mutant htt (YAC72 +/+) breed normally and have no evidence of increased testicular cell death. Similar findings are seen in YAC46 -/- mice compared with YAC46 +/+ mice, in which wild-type htt can completely counteract the proapoptotic effects of mutant htt. YAC18 -/- mice display no evidence of increased cellular apoptosis, even in the complete absence of endogenous htt, demonstrating that the massive cellular apoptosis observed in YAC46 -/- mice and YAC72 -/- mice is polyglutamine-mediated toxicity from the mutant transgene. These data provide the first direct in vivo evidence of a role for wild-type htt in decreasing the cellular toxicity of mutant htt.


Advances in Experimental Medicine and Biology | 2009

The Sertoli cell cytoskeleton.

A. Wayne Vogl; Kuljeet Vaid; Julian A. Guttman

The cytoskeleton of terminally differentiated mammalian Sertoli cells is one of the most elaborate of those that have been described for cells in tissues. Actin filaments, intermediate filaments and microtubules have distinct patterns of distribution that change during the cyclic process of spermatogenesis. Each of the three major cytoskeletal elements is either concentrated at or related in part to intercellular junctions. Actin filaments are concentrated in unique structures termed ectoplasmic specializations that function in intercellular adhesion, and at tubulobulbar complexes that are thought to be involved with junction internalization during sperm release and movement of spermatocytes through basal junctions between neighboring Sertoi cells. Intermediate filaments occur in a perinuclear network which has peripheral extensions to desmosome-like junctions with adjacent cells and to small hemidesmosome-like attachments to the basal lamina. Unlike in most other epithelia where the intermediate filaments are of the keratin type, intermediate filaments in mature Sertoli cells are of the vimentin type. The function of intermediate filaments in Sertoli cells in not entirely clear; however, the pattern of filament distribution and the limited experimental data available are consistent with a role in maintaining tissue integrity when the epithelium is mechanically stressed. Microtubules are abundant in Sertoli cells and are predominantly oriented parallel to the long axis of the cell. Microtubules are involved with maintaining the columnar shape of Sertoli cells, with transporting and positioning organelles in the cytoplasm, and with secreting seminiferous tubule fluid. In addition, microtubule-based transport machinery is coupled to intercellular junctions to translocate and position adjacent spermatids in the epithelium. Although the cytoskeleton of Sertoli cells has structural and functional properties common to cells generally, there are a number of properties that are unique and that appear related to processes fundamental to spermatogenesis and to interfacing somatic cells both with similar neighboring somatic cells and with differentiating cells of the germ cell line.


Stem Cells | 2009

Depot-Specific Differences in Adipogenic Progenitor Abundance and Proliferative Response to High-Fat Diet†‡§

Aaron W. Joe; Lin Yi; Yasmine Even; A. Wayne Vogl; Fabio Rossi

White adipose tissue (fat) is the primary organ for energy storage and its regulation has serious implications on human health. Excess fat tissue causes significant morbidity, and adipose tissue dysfunction caused by excessive adipocyte hypertrophy has been proposed to play a significant role in the pathogenesis of metabolic disease. Studies in both humans and animal models show that metabolic dysfunction is more closely associated with visceral than subcutaneous fat accumulation. Here, we show that in mice fed a high‐fat diet, visceral fat (VAT) grows mostly by hypertrophy and subcutaneous fat (SAT) by hyperplasia, providing a rationale for the different effects of specific adipose depots on metabolic health. To address whether depot expansion is controlled at the level of stem/progenitor cells, we developed a strategy to prospectively identify adipogenic progenitors (APs) from both depots. Clonogenic assays and in vivo bromodeoxyuridine (BrdU) studies show that APs are eightfold more abundant in SAT than VAT, and that AP proliferation is significantly increased in SAT but not VAT in response to high‐fat diet. Our results suggest that depot‐specific differences in AP abundance and proliferation underlie whether a fat depot expands by hypertrophy or hyperplasia, and thus may have important implications on the development of metabolic disease. In addition, we provide the first evidence that dietary inputs can modulate the proliferation of adipogenic progenitors in adults. STEM CELLS 2009;27:2563–2570


Cellular Microbiology | 2006

Attaching and effacing pathogen‐induced tight junction disruption in vivo

Julian A. Guttman; Yuling Li; Mark E. Wickham; Wanyin Deng; A. Wayne Vogl; B. Brett Finlay

Diarrhoea is a hallmark of infections by the human attaching and effacing (A/E) pathogens, enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). Although the mechanisms underlying diarrhoea induced by these pathogens remain unknown, cell culture results have suggested that these pathogens may target tight junctions. Tight junctions in the colon function as physical intercellular barriers that separate and prevent mixing of the luminal contents with adlumenal regions of the epithelium. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by A/E pathogens could result in a loss of barrier function in the alimentary tract; however, this remains unexamined. Here we demonstrate for the first time that A/E pathogen infection results in the morphological alteration of tight junctions during natural disease. Tight junction alteration, characterized by relocalization of the transmembrane tight junction proteins claudin 1, 3 and 5, is a functional disruption; molecular tracers, which do not normally penetrate uninfected epithelia, pass across pathogen‐infected epithelia. Functional junction disruption occurs with a concomitant increase in colon luminal water content. The effects on tissue are dependent upon the bacterial type III effector EspF (E. coli secreted protein F), because bacteria lacking EspF, while able to colonize, are defective for junction disruption and result in decreased proportions of water in the colon compared with wild‐type infection. These results suggest that the diarrhoea induced by A/E pathogens occurs as part of functional tight junction disruption.


Biology of Reproduction | 2001

Rat Seminiferous Epithelium Contains a Unique Junction (Ectoplasmic Specialization) with Signaling Properties Both of Cell/Cell and Cell/Matrix Junctions

David J. Mulholland; Shoukat Dedhar; A. Wayne Vogl

Abstract The seminiferous epithelium contains unique actin related cell-cell junctions, termed ectoplasmic specializations (ESs). Turnover of these junctions is fundamental to sperm release and to movement of spermatocytes from basal to adluminal compartments of the epithelium during spermatogenesis. In this study we report several novel observations related to the spatial and temporal distribution of integrin-related signaling molecules at ESs. We confirm the presence of β1-integrin at these sites and further demonstrate co-localization of integrin linked kinase (ILK). β1-Integrin and ILK were shown by immunoprecipitation to associate in whole cell lysates of seminiferous epithelium. This observation provides the first evidence for a direct β1-integrin/ILK interaction in noncultured epithelium. Pan-cadherin and β-catenin antibodies did not react at ESs. Rather, antibodies reacted with desmosome-like junctions that are present both at basal junctional complexes between Sertoli cells and at sites of attachment to spermatogenic cells. Focal adhesion kinase (FAK), a known integrin-associated molecule, did not codistribute with β1-integrins and did not associate with these adhesion molecules in immunoprecipitation studies. Although FAK was expressed in the epithelium, it appeared to be limited to the cytoplasm of early spermatogenic cells. Significantly, polyclonal antibodies against phosphotyrosine-containing residues reacted strongly at ESs, with highest levels detected during sperm release and turnover of basal junction complexes. Our observations indicate that ESs share cell signaling features both of cell-cell junctions and of cell-extracellular matrix junctions.


Biology of Reproduction | 2004

Evidence That Tubulobulbar Complexes in the Seminiferous Epithelium Are Involved with Internalization of Adhesion Junctions

Julian A. Guttman; Yoshimi Takai; A. Wayne Vogl

Abstract Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCα, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.


Neurobiology of Disease | 2007

Testicular degeneration in Huntington disease

Jeremy M. Van Raamsdonk; Zoe Murphy; David M. Selva; Reza Hamidizadeh; Jacqueline Pearson; Åsa Petersén; Maria Björkqvist; Cameron Muir; Ian R. A. Mackenzie; Geoffrey L. Hammond; A. Wayne Vogl; Michael R. Hayden; Blair R. Leavitt

Huntington disease (HD) is an adult onset, neurodegenerative disorder that results from CAG expansion in the HD gene. Recent work has demonstrated testicular degeneration in mouse models of HD and alterations in the hypothalamic-pituitary-gonadal (HPG) axis in HD patients. Here, we show that HD patients have specific testicular pathology with reduced numbers of germ cells and abnormal seminiferous tubule morphology. In the YAC128 mouse model, testicular degeneration develops prior to 12 months of age, but at 12 months, there is no evidence for decreased testosterone levels or loss of GnRH neurons in the hypothalamus. This suggests that testicular pathology results from a direct toxic effect of mutant huntingtin in the testis and is supported by the fact that huntingtin is highly expressed in the affected cell populations in the testis. Understanding the pathogenesis of HD in the testis may reveal common critical pathways which lead to degeneration in both the brain and testis.


Infection and Immunity | 2006

Evidence that Tight Junctions Are Disrupted Due to Intimate Bacterial Contact and Not Inflammation during Attaching and Effacing Pathogen Infection In Vivo

Julian A. Guttman; Fereshte N. Samji; Yuling Li; A. Wayne Vogl; B. Brett Finlay

ABSTRACT It is widely accepted that tight junctions are altered during infections by attaching and effacing (A/E) pathogens. These disruptions have been demonstrated both in vitro and more recently in vivo. For in vivo experiments, the murine model of A/E infection with Citrobacter rodentium is the animal model of choice. In addition to effects on tight junctions, these bacteria also colonize the colon at high levels, efface colonocyte microvilli, and cause hyperplasia and inflammation. Although we have recently demonstrated that tight junctions are disrupted by C. rodentium, the issue of direct effects of bacteria on epithelial cell junctions versus the indirect effects of inflammation still remains to be clarified. Here, we demonstrate that during the C. rodentium infections, inflammation plays no discernible role in the alteration of tight junctions. The distribution of the tight junction proteins, claudin-1, -3, and -5, are unaffected in inflamed colon, and junctions appear morphologically unaltered when viewed by electron microscopy. Additionally, tracer molecules are not capable of penetrating the inflamed colonic epithelium of infected mice that have cleared the bacteria. Finally, infected colonocytes from mice exposed to C. rodentium for 14 days, which have high levels of bacterial attachment to colonocytes as well as inflammation, have characteristic, altered claudin localization whereas cells adjacent to infected colonocytes retain their normal claudin distribution. We conclude that inflammation plays no discernible role in tight junction alteration during A/E pathogenesis and that tight junction disruption in vivo appears dependent only on the direct intimate attachment of the pathogenic bacteria to the cells.


Biology of Reproduction | 2009

Tubulobulbar Complexes Are Intercellular Podosome-Like Structures That Internalize Intact Intercellular Junctions During Epithelial Remodeling Events in the Rat Testis

J'Nelle S. Young; Julian A. Guttman; Kuljeet Vaid; A. Wayne Vogl

Abstract Tubulobulbar complexes are actin-related double-membrane projections that resemble podosomes in other systems and form at intercellular junctions in the seminiferous epithelium of the mammalian testis. They are proposed to internalize intact junctions during sperm release and during the translocation of spermatocytes through basal junction complexes between neighboring Sertoli cells. In this study we probe apical tubulobulbar complexes in fixed epithelial fragments and fixed frozen sections of rat and mouse testes for junction molecules reported to be present at apical sites of attachment (ectoplasmic specializations) between Sertoli cells and spermatids. The adhesion molecules nectin 2 (PVRL2), nectin 3 (PVRL3) and alpha 6 integrin (ITGA6) are present in the elongate parts of tubulobulbar complexes and concentrated at their distal ends. Tubulobulbar complexes contain cortactin (CTTN), a key component of podosomes, and vesicles at the distal ends of tubulobulbar complexes that contain junction molecules are related to early endosome antigen (EEA1). N-cadherin (CDH2), a protein reported to be present at ectoplasmic specializations, is not localized to these unique junctions or to tubulobulbar complexes but, rather, is primarily concentrated at desmosomes in basal regions of the epithelium. Our results are consistent with the conclusion that tubulobulbar complexes are podosome-like structures that are responsible for internalizing intact intercellular junctions during spermatogenesis.


Tissue & Cell | 1986

Characterization of filaments within the subacrosomal space of rat spermatids during spermiogenesis

Lonnie D. Russell; James E. Weber; A. Wayne Vogl

Two types of filaments were observed within the subacrosomal space of rat spermatids. The first of these types was characterized as actin by demonstration of actin filament affinity for myosin S-1 subfragments. Actin filaments were noted in the subacrosomal space shortly after the acrosomal sac made contact with the nucleus. As the acrosome increased its surface area contact with the spermatid nucleus, the number of layers of subacrosomal filaments increased. Pre-treatment with detergent, which in addition to permeablizing cells to allow entry of S-1, also caused the acrosome to vesiculate and the subacrosomal space to widen. In such preparations filaments were more easily visualized and appeared to extend between the nuclear and acrosomal membranes, indicating, but not proving, attachment to these membranes. During spermatid clongation, the number of actin filaments in the subacrosomal space increased greatly, especially over the dorsal convex region of the spermatid head. The polarity of the majority of filaments was not ascertainable since filaments were tightly packed within the narrow subacrosomal space. In late spermiogenesis (steps 18 and 19), actin filaments were no longer detected within the subacrosomal space. A second and much thicker type of filamentous structure was observed in the subacrosomal space of spermatids at steps 14-17 of spermiogenesis. About 14 nm in diameter (10-15 nm measurement range depending on fixation protocol utilized), these filaments did not decorate with myosin S-1 subfragments and were found in subacrosomal regions not containing actin. Fourteen nanometer filaments were seen in parallel array along the ventral folded portion of the nuclear membrane and extended partially around the nucleus. Like actin filaments. 14 nm filaments were not seen in the subacrosomal space during late spermiogenesis.

Collaboration


Dive into the A. Wayne Vogl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Brett Finlay

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

J'Nelle S. Young

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuling Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kuljeet Vaid

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Margo A. Lillie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas D. Pyenson

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Arlo Adams

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge