Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.Y. Pankin is active.

Publication


Featured researches published by A.Y. Pankin.


Nuclear Fusion | 2003

Burning plasma projections using drift-wave transport models and scalings for the H-mode pedestal

J.E. Kinsey; G. Bateman; Thawatchai Onjun; Arnold H. Kritz; A.Y. Pankin; G. M. Staebler; R. E. Waltz

OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density.


Nuclear Fusion | 2001

Physics of confinement improvement of plasmas with impurity injection in DIII-D

M. Murakami; G.R. McKee; G.L. Jackson; G. M. Staebler; David A. Alexander; D.R. Baker; G. Bateman; L. R. Baylor; Jose Armando Boedo; N. H. Brooks; K.H. Burrell; John R. Cary; R.H. Cohen; R.J. Colchin; J.C. DeBoo; E. J. Doyle; D.R. Ernst; Todd Evans; C. Fenzi; C.M. Greenfield; D.E. Greenwood; Richard J. Groebner; J. Hogan; W. A. Houlberg; A.W. Hyatt; R. Jayakumar; T.C. Jernigan; R.A. Jong; J.E. Kinsey; Arnold H. Kritz

External impurity injection into L mode edge discharges in DIII-D has produced clear confinement improvement (a factor of 2 in energy confinement and neutron emission), reduction in all transport channels (particularly ion thermal diffusivity to the neoclassical level), and simultaneous reduction of long wavelength turbulence. Suppression of the long wavelength turbulence and transport reduction are attributed to synergistic effects of impurity induced enhancement of E × B shearing rate and reduction of toroidal drift wave turbulence growth rate. A prompt reduction of density fluctuations and local transport at the beginning of impurity injection appears to result from an increased gradient of toroidal rotation enhancing the E × B shearing. Transport simulations carried out using the National Transport Code Collaboration demonstration code with a gyro-Landau fluid model, GLF23, indicate that E × B shearing suppression is the dominant transport suppression mechanism.


Physics of Plasmas | 2013

Physics basis of Multi-Mode anomalous transport module

T. Rafiq; Arnold H. Kritz; Jan Weiland; A.Y. Pankin; L. Luo

The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions.


Physics of Plasmas | 2010

Development of drift-resistive-inertial ballooning transport model for tokamak edge plasmas

T. Rafiq; G. Bateman; Arnold H. Kritz; A.Y. Pankin

A new model is developed for transport driven by drift-resistive-inertial ballooning modes (DRIBMs) in axisymmetric tokamak plasmas. The model is derived using two-fluid reduced Braginskii equations in a generalized s−α geometry. The unified theory includes diamagnetic effects, parallel electron and ion dynamics, electron inertia, magnetic perturbations, transverse particle diffusion, gyroviscous stress terms, electron and ion equilibrium temperature gradients, and temperature perturbations. A mixing length approximation is used to compute electron and ion thermal transport as well as particle fluxes from eigenvalues and eigenvectors of the linearized equations. The prediction for the saturation level is obtained by balancing the DRIBM growth rate against the nonlinear E×B convection. The parametric dependence of DRIBMs is investigated in systematic scans over density gradient, electron and ion temperature gradients, magnetic-q, collision frequency, magnetic shear, and Larmor radius. The DRIBM threshold ...


Physics of Plasmas | 2001

Comparison of high-mode predictive simulations using Mixed Bohm/gyro-Bohm and Multi-Mode (MMM95) transport models

David W. Hannum; G. Bateman; Jon E. Kinsey; Arnold H. Kritz; Thawatchai Onjun; A.Y. Pankin

Two different transport models—the Mixed Bohm/gyro-Bohm [Joint European Torus (JET)] model [Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)] and the Multi-Mode model (MMM95) [Bateman et al., Phys. Plasmas 5, 1793 (1998)]—are used in predictive transport simulations of 22 high-mode discharges. Fourteen discharges that include systematic scans in normalized gyroradius (ρ*), plasma pressure (β), collisionality, and isotope mass in the JET tokamak [Rebut et al., Nucl. Fusion 25, 1011 (1985)] and eight discharges that include scans in ρ*, elongation (κ), power, and density in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] are considered. When simulation temperature and density profiles are compared with processed experimental data from the International Profile Database, it is found that the results with either the JET or MMM95 transport model match experimental data about equally well. With either model, the average normalized rms deviation is approximately 10%. In ...


Physics of Plasmas | 2008

Predictive simulations of ITER including neutral beam driven toroidal rotation

Federico David Halpern; Arnold H. Kritz; G. Bateman; A.Y. Pankin; R. V. Budny; D. McCune

Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)], discharges are carried out for the 15MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R. Waltz et al., Phys. Plasm...


Physics of Plasmas | 2008

Improved model for transport driven by drift modes in tokamaks

Federico David Halpern; Annika Eriksson; G. Bateman; Arnold H. Kritz; A.Y. Pankin; Christopher M. Wolfe; Jan Weiland

A comparison is made between two versions of the Weiland model for computing anomalous transport driven by drift modes such as the ion temperature gradient (ITG) and trapped electron mode (TEM) in tokamak plasmas. Both are quasilinear fluid models that include physical effects resulting from finite β, magnetic shear, electron-ion collisions, impurities, and fast ions. An outline of the derivation is presented for the newer Weiland19 model, which includes a more accurate description of the effects of finite β, low and negative magnetic shear, plasma elongation, varying correlation lengths, particle pinch, and momentum transport. It is shown that the two models produce nearly the same ion thermal diffusivity as a function of normalized temperature gradient in a circular plasma with moderate magnetic shear, low β, and moderately low density gradient. The models differ significantly at low magnetic shear and in elongated plasmas with high β. In addition, the two models differ significantly in the behavior of ...


Plasma Physics and Controlled Fusion | 2007

Modelling of ELM dynamics for DIII-D and ITER

A.Y. Pankin; G. Bateman; D.P. Brennan; Arnold H. Kritz; Scott Kruger; P.B. Snyder; C.R. Sovinec

A model for integrated modelling studies of edge localized modes (ELMs) in ITER is discussed in this paper. Stability analyses are carried out for ITER and DIII-D equilibria that are generated with the TEQ and TOQ equilibrium codes. The H-mode pedestal pressure and parallel current density are varied in a systematic way in order to span the relevant parameter space for specific ITER plasma parameters. The ideal MHD stability codes, DCON, ELITE and BALOO, are employed to determine whether or not each ITER equilibrium profile is unstable to peeling or ballooning modes in the pedestal region. Several equilibria that are close to the marginal stability boundary for peeling and ballooning modes are tested with the NIMROD non-ideal MHD code. When the effects of finite resistivity are studied in a series of linear NIMROD computations, it is found that the peeling?ballooning stability threshold is very sensitive to the resistivity and viscosity profiles, which vary dramatically over a wide range near the separatrix. When two-fluid gyro-viscous and Hall effects are included in NIMROD computations, it is found that harmonics with high toroidal mode numbers are stabilized while the growth rate of harmonics with low toroidal mode numbers are only moderately reduced. When flow shear across the H-mode pedestal is included, it is found that linear growth rates are increased, particularly for harmonics with high toroidal mode numbers. In nonlinear NIMROD simulations, ELM crashes produce filaments that extend out to the wall in the absence of flow shear. When flow shear is included, the filaments are dragged by the fluid and sheared off before they extend to the wall.


Nuclear Fusion | 2011

Integrated modelling for prediction of optimized ITER performance

Arnold H. Kritz; T. Rafiq; C. Kessel; G. Bateman; D. McCune; R.V. Budny; A.Y. Pankin

ITER hybrid and target steady-state fusion burn scenarios are simulated using the PTRANSP integrated modelling code together with input from the TSC code. In the hybrid scenarios, the majority of the current is driven inductively; whereas, for the target steady-state scenarios, approximately 22% of the current (at 1000 s) is driven inductively with the remaining current driven by the bootstrap, neutral beam and radio frequency sources. Predictive simulations are carried out using either the new Multi-Mode or the GLF23 anomalous transport model. Momentum transport is used to compute the toroidal angular frequency profile which, in turn, is used to compute the self-consistent flow shear suppression of anomalous transport. The simulations of the hybrid scenario indicate that the fusion power production at 1000 s will be approximately 500 MW corresponding to a fusion Q = 9.4. The fusion power predicted in the simulations of the target steady-state scenarios is found to depend on the time dependence of the input heating and associated current drive. It is found that turning off some components of auxiliary heating causes the fusion power production to increase. The fusion power obtained in the target steady-state scenarios, depending on the transport model and input injected power, ranges from 168 MW up to 226 MW, corresponding to a fusion Q ranging from 2.0 to 6.8.


parallel, distributed and network-based processing | 2010

FACETS A Framework for Parallel Coupling of Fusion Components

John R. Cary; Ammar Hakim; Mahmood Miah; Scott Kruger; Alexander Pletzer; Svetlana G. Shasharina; Srinath Vadlamani; Ronald Cohen; Tom Epperly; T.D. Rognlien; A.Y. Pankin; Richard J. Groebner; Satish Balay; Lois Curfman McInnes; Hong Zhang

Coupling separately developed codes offers an attractive method for increasing the accuracy and fidelity of the computational models. Examples include the earth sciences and fusion integrated modeling. This paper describes the Framework Application for Core-Edge Transport Simulations (FACETS).

Collaboration


Dive into the A.Y. Pankin's collaboration.

Top Co-Authors

Avatar

Arnold H. Kritz

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Kruger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

D. McCune

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

John R. Cary

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico David Halpern

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Ammar Hakim

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge