Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Yekta Özer is active.

Publication


Featured researches published by A. Yekta Özer.


Drug Delivery | 2006

Thrombus Localization by Using Streptokinase Containing Vesicular Systems

Suna Erdogan; A. Yekta Özer; Bilge Volkan; Biray Caner; Hasan Bilgili

Our research focused on the preparation of vesicular drug delivery systems, such as liposomes, noisomes, and sphingosomes, for achieving slow release of entrapped proteins in the circulation to increase half-life, to mask immunogenic properties, and to protect against loss of enzymatic activity. We prepared, characterized, and monitored the biodistribution of three types of vesicular systems (liposomes, niosomes, and sphingosomes) containing streptokinase. For biodistribution stuides, radiolabelled streptokinase dispersions were injected into the ear vein of female rabbits in the weight of 2.5–3 kg weight. Following the application, rabbits were sacrificed, then organs of these animals were removed and radioactivity of organs was measured by well-type gamma counter. The comparison of the biodistribution results of the free streptokinase with the streptokinase vesicles showed that incorporation of the enzyme into the vesicles changed the biodistribution of the drug and by the entrapment of the streptokinase in the vesicles, thrombus uptake and imaging quality were improved.


Journal of Drug Targeting | 2012

Liposomes and their applications in molecular imaging

Mine Silindir; Suna Erdogan; A. Yekta Özer; Serge Maia

Molecular imaging is a relatively new discipline with a crucial role in diagnosis and treatment tracing of diseases through characterization and quantification of biological processes at cellular and sub-cellular levels of living organisms. These molecular targeted systems can be conjugated with contrast agents or radioligands to obtain specific molecular probes for the purpose of diagnosis of diseases more accurately by different imaging modalities. Nowadays, an interesting new approach to molecular imaging is the use of stealth nanosized drug delivery systems such as liposomes having convenient properties such as biodegradability, biocompatibility and non-toxicity and they can specifically be targeted to desired disease tissues by combining with specific targeting ligands and probes. The targeted liposomes as molecular probes in molecular imaging have been evaluated in this review. Therefore, the essential point is detection of molecular target of the disease which is different from normal conditions such as increase or decrease of a receptor, transporter, hormone, enzyme etc, or formation of a novel target. Transport of the diagnostic probe specifically to targeted cellular, sub-cellular or even to molecular entities can be performed by molecular imaging probes. This may lead to produce personalized medicine for imaging and/or therapy of diseases at earlier stages.


Drug Delivery | 2012

The use and importance of liposomes in Positron Emission Tomography

Mine Silindir; A. Yekta Özer; Suna Erdogan

Among different imaging modalities, Positron Emission Tomography (PET) gained importance in routine hospital practice depending on ability to diagnose diseases in early stages and tracing of therapy by obtaining metabolic information. The combination of PET with Computed Tomography (CT) forms hybrid imaging modality that gives chance to obtain better images having higher resolution by fusing both functional and anatomical images in the same imaging modality at the same time. Therefore, better contrast agents are essentially needed. The advance in research about developing drug delivery systems as specific nanosized targeted systems gained an additional importance for obtaining better diagnosis and therapy of different diseases. Liposomes appear to be more attractive drug delivery systems in delivering either drugs or imaging ligands to target tissue or organ of diseases with higher accumulation by producing in nano-scale, long circulating by stealth effect and specific targeting by modifying with specific ligands or markers. The combination of positron emitting radionuclides with liposomes are commonly in research level nowadays and there is no commercially available liposome formulation for PET imaging. However by conjugating positron emitter radionuclide with liposomes can form promising diagnostic agents for improved diagnosis and following up treatments by increasing image signal/contrast in the target tissue in lower concentrations by specific targeting as the most important advantage of liposomes. More accurate and earlier diagnosis of several diseases can be obtained even in molecular level with the use of stable and effectively radiolabeled molecular target specific nano sized liposomes with longer half-lived positron emitting radionuclides.


Interventional Medicine and Applied Science | 2014

Radiation sterilization of new drug delivery systems

Gürhan Abuhanoğlu; A. Yekta Özer

Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (γ) and beta (β) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by γ irradiation.


Interventional Medicine and Applied Science | 2013

Gamma-irradiated liposome/noisome and lipogelosome/niogelosome formulations for the treatment of rheumatoid arthritis.

Selcan Türker; A. Yekta Özer; Ekrem Kiliç; Meral Özalp; Seyda Colak; Mustafa Korkmaz

Treatment of rheumatoid arthritis by intraarticular administration of anti-inflammatory drugs encapsulated in drug delivery systems, such as liposomes/niosomes and lipogelosomes/niogelosomes, prolongs the residence time of the drugs in the joint. It was therefore anticipated that liposome/niosome entrapment would enhance the efficacy of drugs in the inflammatory sides. Liposomes are good candidates for the local delivery of therapeutic agents, such as diclofenac sodium (DFNa), for intraarticular delivery. Drugs for parenteral delivery must be sterile, and radiation sterilization is a method recognized by pharmacopoeias to achieve sterility of drugs. However, irradiation might also affect the performance of drug delivery systems. One of the most critical points is irradiation dose, because certain undesirable chemical and physical changes may accompany with the treatment, especially with the traditionally applied dose of 25 kGy. The present study aims to determine the effects of gamma irradiation on DFNa-loaded liposomes/niosomes and lipogelosomes/niogelosomes for the treatment of rheumatoid arthritis.


Tissue Engineering and Regenerative Medicine | 2014

The effect of gamma radiation sterilization on dental biomaterials

N. Selcan Türker; A. Yekta Özer; Burak Kutlu; Rahime M. Nohutcu; Arzu Sungur; Hasan Bilgili; Melike Ekizoğlu; Meral Özalp

Biomaterials are used in the field of bone and tissue engineering, orthopaedics and dentistry. Dental biomaterials including commercially available biodegradable materials act as physical barriers to help quicker healing while stimulating the regeneration of periodontal tissues, which is defined as Guided Tissue Regeneration (GTR). Amongst natural and synthetic biomaterials, collagen and aliphatic polyesters, such as polylactic acid (PLA) and poly (lactic-co-glycolic) acid (PLGA) are the most frequently used biomaterials for regenerative therapies due to their excellent biocompatibility and biodegradability. Due to their resorption in the body and interaction with biological systems, the GTR membranes must be sterile and pyrogen free. The sterility and apyrogenicity of the GTR membranes before human use is a regulatory requirement, however the sterilization of biomaterials is challenging due to the physicochemical changes and toxic residues with the commonly used sterilization techniques. The purpose of the present study was to evaluate the effect of gamma radiation and ethylene oxide sterilization on dental biomaterials with analytical, microbiological and histological examinations. PLGA-based GTR dental biomaterial is selected as the most gamma stable membrane according to the FTIR, DSC, TGA, and SEM results. This dental membrane was sterilized with ethylene oxide (EtO) and the effect of sterilization method on PLGA-based membrane was also investigated. Animal experiments were carried out to evaluate the regenerative properties and inflammatory responses of gamma and EtO sterilized PLGA-based GTR membrane after implantation. Histological examinations showed that resorption and bone formation of gamma sterilized PLGA-based GTR membrane was completed in 12 weeks without any inflammatory response; while only 60.095 ± 2.019% of new bone formation was observed with EtO sterilized one. Gamma sterilized PLGA membrane had significantly faster (P < 0.05) resorption and bone formation in comparison with EtO sterilization. In conclusion, the PLGA-based biomaterials could be sterilized safely and time- and cost-effectively with validated radiation doses for the tissue engineering applications.


Journal of Liposome Research | 2013

Nanosized multifunctional liposomes for tumor diagnosis and molecular imaging by SPECT/CT

Mine Silindir; Suna Erdogan; A. Yekta Özer; A. Lale Doğan; Murat Tuncel; Omer Ugur; Vladimir P. Torchilin

Among currently used cancer imaging methods, nuclear medicine modalities provide metabolic information, whereas modalities in radiology provide anatomical information. However, different modalities, having different acquisition times in separate machines, decrease the specificity and accuracy of images. To solve this problem, hybrid imaging modalities were developed as a new era, especially in the cancer imaging field. With widespread usage of hybrid imaging modalities, specific contrast agents are essentially needed to use in both modalities, such as single-photon emission computed tomography/computed tomography (SPECT/CT). Liposomes are one of the most desirable drug delivery systems, depending on their suitable properties. The aim of this study was to develop a liposomal contrast agent for the diagnosis and molecular imaging of tumor by SPECT/CT. Liposomes were prepared nanosized, coated with polyethylene glycol to obtain long blood circulation, and modified with monoclonal antibody 2C5 for specific tumor targeting. Although DTPA-PE and DTPA-PLL-NGPE (polychelating amphilic polymers; PAPs) were loaded onto liposomes for stable radiolabeling for SPECT imaging, iopromide was encapsulated into liposomes for CT imaging. Liposomes [(DPPC:PEG2000-PE:Chol:DTPA-PE), (PL 90G:PEG2000-PE:Chol:DTPA-PE), (DPPC:PEG2000-PE:Chol:PAPs), (PL 90G:PEG2000-PE:Chol:PAPs), (60:0.9:39:0.1% mol ratio)] were characterized in terms of entrapment efficiency, particle size, physical stability, and release kinetics. Additionally, in vitro cell-binding studies were carried out on two tumor cell lines (MCF-7 and EL 4) by counting radioactivity. Tumor-specific antibody-modified liposomes were found to be effective multimodal contrast agents by designating almost 3–8 fold more uptake than nonmodified ones in different tumor cell lines. These results could be considered as an important step in the development of tumor-targeted SPECT/CT contrast agents for cancer imaging.


Journal of Liposome Research | 2014

Liposome, gel and lipogelosome formulations containing sodium hyaluronate

Gulengul Duman; Ismail Aslan; A. Yekta Özer; Ibrahim Inanc; Alpay Taralp

Abstract The moisture-imparting effect of sodium hyaluronate (Na-HA) was investigated in liposome, gel and lipogelosome topical formulations. Sixteen liposome formulations were prepared with or without Na-HA (45 kDa) using various ratios of dimyristoylphosphatidylcholine, 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol, dipalmitoylphosphatidylcholine and phospholipon 100H. The liposomes were characterized in terms of their structure, composition, zeta potential, Na-HA-entrapment capacity and stability. In particular, scanning electron microscopy, polarized light microscopy, dynamic light scattering and atomic force microscopy were utilized to probe appearance, size and size distribution and lamellarity. The work was then extended to gels using the gelling agents poloxamer (PXM 188 or 407) and Carbopol or Ultrez 21 (U-21), yielding liposome-loaded gel formulations (i.e. lipogelosomes). The in vitro release kinetics of Na-HA from liposomes, lipogelosomes and commercial Na-HA reference formulations were studied via a flow-through cell method. Among the liposomal formulations tested, L6, comprising of Na-HA-loaded phospholipon 100H:stearylamine:cholesterol (7:1:2), displayed optimal traits. The mean particle size, zeta potential and entrapment capacity of L6 were determined as 1900 nm, −20.9 mV and 15.0%. The optimum lipogelosome, LG4, was obtained by incorporating liposome L6 into a U-21 gel at a ratio of 1:1 (w/w). In clinical trials, in-house formulations were applied twice daily to 15 female volunteers. The two-week benefits were assessed against a commercial product; and in all cases, changes of skin humidity, sebum content, pH and wrinkle depth were promising. In particular, the LG4 lipogelosome-based formulation had significantly improved skin hydration and compliance, as evidenced by a moisture content gain of 30.4%.


Archive | 2007

Alternative Applications for Drug Delivery: Nasal and Pulmonary Routes

A. Yekta Özer

For treatment of human diseases, nasal and pulmonary routes of drug delivery are gaining increasing importance. These routes provide promising alternatives to parenteral drug delivery particularly for peptide and protein therapeutics. For this purpose, several drug delivery systems have been formulated and are being investigated for nasal and pulmonary delivery. These include liposomes, proliposomes, microspheres, gels, prodrugs, cyclodextrins and others. In this chapter, nasal and pulmonary drug delivery mechanisms and some of the relevant drug delivery formulations are evaluated


Neurological Sciences | 2014

The benefits of pramipexole selection in the treatment of Parkinson’s disease

Mine Silindir; A. Yekta Özer

Levodopa administration as a gold standard in Parkinson’s disease (PD) treatment is very valuable, however, long-term administration may cause some motor complications such as abnormal unintended movements and shortening response to each dose (wearing off phenomenon). Dopamine agonists were developed to reduce duration of immobile off periods and dependence to levodopa for improving motor impairments (Clarke et al., Cochrane Libr 1:1–23, 2000). Pramipexole is one of these nonergot dopamine agonists with high relative in vitro specificity and full intrinsic activity at D2 subfamily of dopamine receptors, with a higher binding affinity to D3 than to D4 or D2 receptor subtypes (Piercey, Clin Neuropharmacol 21:141–151, 1998). It can be advantageously administered as monotherapy or adjunctive therapy to levodopa to decrease side effects and increase effectiveness in both early and advanced PD treatment.

Collaboration


Dive into the A. Yekta Özer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge