Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Ziani is active.

Publication


Featured researches published by A. Ziani.


Mathematical Models and Methods in Applied Sciences | 1996

MATHEMATICAL ANALYSIS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT MODELS IN POROUS MEDIA

Youcef Amirat; Kamel Hamdache; A. Ziani

We discuss a three-dimensional displacement model of one miscible compressible fluid by another in a porous medium. The motion is modeled by a nonlinear system of parabolic type coupling the pressure and the concentration. We give an existence result of weak solutions for a model with diffusion and dispersion, using the Schauder fixed point theorem. We also study a model in the absence of diffusion and dispersion. The system becomes of parabolic-hyperbolic type, the existence of global weak solutions is then obtained through a compensated compactness argument.


Annales De L Institut Henri Poincare-analyse Non Lineaire | 1989

Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux

Youcef Amirat; Kamel Hamdache; A. Ziani

Resume On s’interesse a l’homogeneisation de l’equation hyperbolique modele ∂ t u e + a e ( t , y ) ∂ x u e = 0 , t > 0 , x ∈ ℝ , y ∈ Ω ⊂ ℝ N , munie d’une condition initiale (et d’une condition aux limites lorsque x ∈]0, 1[). Pour cela, nous caracterisons la limite L∞(Ω) faible * de fonctions du type φ x e ( λ ) = ( λ − A e ( y ) ) − 1 definies pour , λ ∉ [m, M] et verifiant 0


Asymptotic Analysis | 1990

Homogénéisation d'un modèle d'écoulements miscibles en milieu poreux

Youcef Amirat; Kamel Hamdache; A. Ziani

We consider a 1-D model for incompressible miscible displacements in porous media without any dispersion term. Existence and uniqueness results for nonsmooth data are proved. We study the homogenization of the model. The limit problem is of the same type. The result is obtained thanks to compactness properties of the corresponding characteristic curves.


Zeitschrift Fur Analysis Und Ihre Anwendungen | 2004

Asymptotic Behavior of the Solutions of an Elliptic-Parabolic System Arising in Flow in Porous Media

Youcef Amirat; A. Ziani

We study the asymptotic behavior, with respect to high Peclet numbers, of the solutions of the nonlinear elliptic-parabolic system governing the displacement of one incompressible fluid by another, completely miscible with the first, in a porous medium. Using compensated compactness techniques, we obtain the existence of a global weak solution to the nonlinear degenerate elliptic-parabolic system modelling the flow when the molecular diffusion effects are neglected.


Applicable Analysis | 1999

Classical solutions of a parabolic-hyperbolic system modeling a three-dimensional compressible miscible flow in porous media

Youcef Amirat; A. Ziani

Abstract We consider a nonlinear parabolic-hyperbolic system which is a simplified version of the equations of compressible miscible flow in a three-dimensional porous medium. No assumption about the mobility ratio is involved. Under some regularity assumptions on the data, we prove the local existence and uniqueness of a classical solution.


Proceedings of the Royal Society of Edinburgh Section A: Mathematics | 1992

Homogenisation of parametrised families of hyperbolic problems

Youcef Amirat; Kamel Hamdache; A. Ziani


Communications in Partial Differential Equations | 1991

Kinetic formulation for a transport equation with memory

Youcef Amirat; Kamel Hamdache; A. Ziani


Comptes rendus de l'Académie des sciences. Série 1, Mathématique | 1990

ETUDE D'UNE EQUATION DE TRANSPORT A MEMOIRE

Youcef Amirat; Kamel Hamdache; A. Ziani


Journal of Mathematical Analysis and Applications | 1998

Global Weak Solutions for a Parabolic System Modeling a One-Dimensional Miscible Flow in Porous Media

Youcef Amirat; A. Ziani


Comptes rendus de l'Académie des sciences. Série 1, Mathématique | 1995

Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux

Youcef Amirat; Kamel Hamdache; A. Ziani

Collaboration


Dive into the A. Ziani's collaboration.

Top Co-Authors

Avatar

Youcef Amirat

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge