Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Christopher. Hall is active.

Publication


Featured researches published by Aaron Christopher. Hall.


Journal of Thermal Spray Technology | 2006

The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

Aaron Christopher. Hall; D. J. Cook; R. A. Neiser; T. J. Roemer; Deidre A. Hirschfeld

Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machined from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300°C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.


Journal of Solar Energy Engineering-transactions of The Asme | 2013

Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers

Clifford K. Ho; A. Roderick Mahoney; Andrea Ambrosini; Marlene Bencomo; Aaron Christopher. Hall; Timothy N. Lambert

Pyromark 2500 is a silicone-based high-temperature paint that has been used on central receivers to increase solar absorptance. The radiative properties, aging, and selective absorber efficiency of Pyromark 2500 are presented in this paper for use as a baseline for comparison to high-temperature solar selective absorber coatings currently being developed. The solar absorptance ranged from ∼0.97 at near-normal incidence angles to ∼0.8 at glancing (80°) incidence angles, and the thermal emittance ranged from ∼0.8 at 100 °C to ∼0.9 at 1000 °C. After thermal aging at temperatures of ∼750 °C or higher, the solar absorptance decreased by several percentage points within a few days. It was postulated that the substrate may have contributed to a change in the crystal structure of the original coating at elevated temperatures.


ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C | 2011

Improved High Temperature Solar Absorbers for Use in Concentrating Solar Power Central Receiver Applications

Andrea Ambrosini; Timothy N. Lambert; Marlene Bencomo; Aaron Christopher. Hall; Kent vanEvery; Nathan P. Siegel; Clifford K. Ho

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.


IEEE\/ASME Journal of Microelectromechanical Systems | 2005

Sidewall morphology of electroformed LIGA parts-implications for friction, adhesion, and wear control

Aaron Christopher. Hall; Mike T. Dugger; Somuri V. Prasad; Todd Christensen

LIGA fabricated parts are finding application in a wide variety of micro-mechanical systems. For these systems to operate reliably, friction between contacting sidewall surfaces must be understood and controlled. The roughness of the as-plated sidewall is an important determinate of friction forces at such contacts. LIGA sidewalls were characterized in order to provide a basis for predicting the friction, adhesion, and wear behavior of LIGA micromachines. A variety of unexpected sidewall morphologies were observed during this investigation. Three morphologies were identified: a fine scale roughness, a linear through thickness feature, and a group of larger high aspect ratio features. Each morphology has been associated with a specific aspect of the LIGA manufacturing process. Potential friction, adhesion, and wear management strategies suggested by these features have been discussed. In addition, the asperity behavior in a LIGA sidewall contact has been predicted based on the finest roughness observed.


international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2012

Characterization of Pyromark 2500 for High-Temperature Solar Receivers

Clifford K. Ho; A. Roderick Mahoney; Andrea Ambrosini; Marlene Bencomo; Aaron Christopher. Hall; Timothy N. Lambert

Pyromark 2500 is a silicone-based high-temperature paint that has been used on central receivers to increase solar absorptance. The cost, application, curing methods, radiative properties, and absorber efficiency of Pyromark 2500 are presented in this paper for use as a baseline for comparison to high-temperature solar selective absorber coatings currently being developed. The directional solar absorptance was calculated from directional spectral absorptance data, and values for pristine samples of Pyromark 2500 were as high as 0.96–0.97 at near normal incidence angles. At higher irradiance angles (>40°–60°), the solar absorptance decreased. The total hemispherical emittance of Pyromark 2500 was calculated from spectral directional emittance data measured at room temperature and 600°C. The total hemispherical emittance values ranged from ∼0.80–0.89 at surface temperatures ranging from 100°C – 1,000°C. The aging and degradation of Pyromark 2500 with exposure at elevated temperatures were also examined. Previous tests showed that solar receiver panels had to be repainted after three years due to a decrease in solar absorptance to 0.88 at the Solar One central receiver pilot plant. Laboratory studies also showed that exposure of Pyromark 2500 at high temperatures (750°C and higher) resulted in significant decreases in solar absorptance within a few days. However, at 650°C and below, the solar absorptance did not decrease appreciably after several thousand hours of testing. Finally, the absorber efficiency of Pyromark 2500 was determined as a function of temperature and irradiance using the calculated solar absorptance and emittance values presented in this paper.© 2012 ASME


Journal of Thermal Spray Technology | 2016

Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

Pylin Sarobol; Michael Chandross; Jay Carroll; William M. Mook; Daniel Charles Bufford; Brad Lee Boyce; Khalid Mikhiel Hattar; Paul Gabriel Kotula; Aaron Christopher. Hall

Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.


Journal of Thermal Spray Technology | 2013

Effect of Process Inputs on Coating Properties in the Twin-Wire Arc Zinc Process

Allison Lynne Johnston; Aaron Christopher. Hall; James F. McCloskey

Relationships between process inputs and coating properties were characterized using a twin-wire arc torch spraying zinc. Specifically, standoff distance, primary and secondary atomizing gas pressures, and arc current were varied in order to determine their effects on deposition efficiency, surface roughness, coating porosity, and spray particle size. Process associations were investigated using an analysis of variance with a design of experiments approach with the intent of determining which spray parameters affect each of the aforementioned coating properties. The associations found are consistent with other studies of the twin-wire arc spray process and provide a framework for selecting process operating conditions based on desired coating properties. Such a specific outline has not been previously available.


Other Information: PBD: 1 Oct 2000 | 2000

Characterization of Sidewall and Planar Surfaces of Electroformed LIGA Parts

Somuri V. Prasad; Aaron Christopher. Hall; Michael Thomas Dugger

The nature of surfaces and the way they interact with each other during sliding contact can have a direct bearing on the performance of a microelectromechanical (MEMS) device. Therefore, a study was undertaken to characterize the surfaces of LIGA fabricated Ni and Cu components. Sidewall and planar surfaces were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface roughness was quantified using the AFM. Post-processing (e.g. lapping, removal of polymer film) can profoundly influence the morphology of LIGA components. Edge rounding and smearing of ductile materials during lapping can result in undesirable sidewall morphologies. By judicious selection of AFM scan sizes, the native roughness ({approximately}10 nm RMS) can be distinguished from that arising due to post processing, e.g. scratches, debris, polymer films. While certain processing effects on morphology such as those due to lapping or release etch can be controlled, the true side wall morphology appears to be governed by the morphology of the polymer mold or by the electroforming process itself, and may be much less amenable to modification.


Archive | 2014

Deformation Behaviors of Sub-micron and Micron Sized Alumina Particles in Compression.

Pylin Sarobol; Michael Chandross; Jay Carroll; William M. Mook; Brad Lee Boyce; Paul Gabriel Kotula; Bonnie Beth McKenzie; Daniel Charles Bufford; Aaron Christopher. Hall

The ability to integrate ceramics with other materials has been limited due to high temperature (>800°C) ceramic processing. Recently, researchers demonstrated a novel process, aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub-micron sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, knowledge in fundamental mechanisms for ceramic particles to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this work, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub-micron sized ceramic particles; this is the first fundamental step needed to explain coating formation in the AD process. High purity, single crystal, alpha alumina particles with nominal sizes of 0.3 μm and 3.0 μm were examined. Particle characterization, using transmission electron microscopy (TEM), showed that the 0.3 μm particles were relatively defect-free single crystals whereas 3.0 μm particles were highly defective single crystals or particles contained low angle grain boundaries. Sub-micron sized Al2O3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3μm particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activity was observed within these particles during compression. These sub-micron sized Al2O3 particles exhibited large accumulated strain (2-3 times those of micron-sized particles) before first fracture. In agreement with the findings from experimentation, atomistic simulations of nano-Al2O3 particles showed dislocation slip and significant plastic deformation during compression. On the other hand, the micron sized Al2O3 particles exhibited brittle fracture in compression. In situ compression experiments showed 3μm Al2O3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al2O3 coating deposition parameters and particle-particle bonding in the consolidated Al2O3 coatings.


international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2015

Thermal Stability of Oxide-Based Solar Selective Coatings for CSP Central Receivers

Andrea Ambrosini; Timothy N. Lambert; Antoine Boubault; Andrew Hunt; Danae J. Davis; David P. Adams; Aaron Christopher. Hall

Efforts at Sandia National Laboratories are addressing more efficient solar selective coatings for tower applications, based on oxide materials deposited by a variety of methods. Over the course of this investigation, several compositions with optical properties competitive to Pyromark have been identified. These promising coatings were deposited on Inconel 625 and Haynes 230 Ni alloys and isothermally aged in air at temperatures between 600–800 °C for up to 480 hours, concurrently with Pyromark®, which was used as a reference standard. At various heating times, the samples were removed from the furnace and their optical properties (solar-weighted absorptance and emittance) were measured. In addition, x-ray diffraction and scanning electron microscopy were utilized to investigate any structural or morphological changes that occurred over time with heating, in an attempt to correlate with changes in optical properties. At 600 and 700 °C, several of the coatings maintained an absorptivity > 90%. While the chemical makeup of the coating material greatly influences its optical properties, the morphology of the surface also plays in important part. A thermal sprayed coating modified using a novel laser treatment showed improved properties versus the untreated coating, on par with Pyromark™ at 600 °C, with little degradation after 480 hours. The results of aging on the optical, structural, and morphological properties of these novel coatings will be discussed.Copyright

Collaboration


Dive into the Aaron Christopher. Hall's collaboration.

Top Co-Authors

Avatar

Pylin Sarobol

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

James F. McCloskey

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Deidre A. Hirschfeld

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

David Anthony Urrea

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Andrea Ambrosini

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

David Edgar Beatty

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Clifford K. Ho

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Timothy N. Lambert

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Brad Lee Boyce

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge