Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron D. Gitler is active.

Publication


Featured researches published by Aaron D. Gitler.


Nature | 2010

Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS

Andrew Elden; Hyung-Jun Kim; Michael P. Hart; Alice Chen-Plotkin; Brian S. Johnson; Xiaodong Fang; Maria Armakola; Felix Geser; Robert Greene; Min Min Lu; Arun Padmanabhan; Dana Clay-Falcone; Leo McCluskey; Lauren Elman; Denise Juhr; Peter J. Gruber; Udo Rüb; Georg Auburger; John Q. Trojanowski; Virginia M.-Y. Lee; Vivianna M. Van Deerlin; Nancy M. Bonini; Aaron D. Gitler

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27–33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43–ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.


Nature | 2013

Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS

Hong Joo Kim; Nam Chul Kim; Yong-Dong Wang; Emily A. Scarborough; Jennifer C. Moore; Zamia Diaz; Kyle S. MacLea; Brian D. Freibaum; Songqing Li; Amandine Molliex; A. Kanagaraj; Robert A. Carter; Kevin B. Boylan; Aleksandra Wojtas; Rosa Rademakers; Jack L. Pinkus; Steven A. Greenberg; John Q. Trojanowski; Bryan J. Traynor; Bradley Smith; Simon Topp; Athina-Soragia Gkazi; John Miller; Christopher Shaw; Michael Kottlors; Janbernd Kirschner; Alan Pestronk; Yun R. Li; Alice Flynn Ford; Aaron D. Gitler

Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.


Nature Genetics | 2009

Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity.

Aaron D. Gitler; Alessandra Chesi; Melissa L. Geddie; Katherine E. Strathearn; Shusei Hamamichi; Kathryn J. Hill; Kim A. Caldwell; Guy A. Caldwell; Antony A. Cooper; Jean-Christophe Rochet; Susan Lindquist

Parkinsons disease (PD), dementia with Lewy bodies and multiple system atrophy, collectively referred to as synucleinopathies, are associated with a diverse group of genetic and environmental susceptibilities. The best studied of these is PD. α-Synuclein (α-syn) has a key role in the pathogenesis of both familial and sporadic PD, but evidence linking it to other predisposition factors is limited. Here we report a strong genetic interaction between α-syn and the yeast ortholog of the PD-linked gene ATP13A2 (also known as PARK9). Dopaminergic neuron loss caused by α-syn overexpression in animal and neuronal PD models is rescued by coexpression of PARK9. Further, knockdown of the ATP13A2 ortholog in Caenorhabditis elegans enhances α-syn misfolding. These data provide a direct functional connection between α-syn and another PD susceptibility locus. Manganese exposure is an environmental risk factor linked to PD and PD-like syndromes. We discovered that yeast PARK9 helps to protect cells from manganese toxicity, revealing a connection between PD genetics (α-syn and PARK9) and an environmental risk factor (PARK9 and manganese). Finally, we show that additional genes from our yeast screen, with diverse functions, are potent modifiers of α-syn–induced neuron loss in animals, establishing a diverse, highly conserved interaction network for α-syn.


Journal of Biological Chemistry | 2009

TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity.

Brian S. Johnson; David Snead; Jonathan J. Lee; J. Michael McCaffery; James Shorter; Aaron D. Gitler

Non-amyloid, ubiquitinated cytoplasmic inclusions containing TDP-43 and its C-terminal fragments are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder, and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Importantly, TDP-43 mutations are linked to sporadic and non-SOD1 familial ALS. However, TDP-43 is not the only protein in disease-associated inclusions, and whether TDP-43 misfolds or is merely sequestered by other aggregated components is unclear. Here, we report that, in the absence of other components, TDP-43 spontaneously forms aggregates bearing remarkable ultrastructural similarities to TDP-43 deposits in degenerating neurons of ALS FTLD-U patients. The C-terminal domain of TDP-43 is critical for spontaneous aggregation. Several ALS-linked TDP-43 mutations within this domain (Q331K, M337V, Q343R, N345K, R361S, and N390D) increase the number of TDP-43 aggregates and promote toxicity in vivo. Importantly, mutations that promote toxicity in vivo accelerate aggregation of pure TDP-43 in vitro. Thus, TDP-43 is intrinsically aggregation-prone, and its propensity for toxic misfolding trajectories is accentuated by specific ALS-linked mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis

Aaron D. Gitler; Brooke J. Bevis; James Shorter; Katherine E. Strathearn; Shusei Hamamichi; Linhui Julie Su; Kim A. Caldwell; Guy A. Caldwell; Jean-Christophe Rochet; J. Michael McCaffery; Charles Barlowe; Susan Lindquist

α-Synuclein (α-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinsons disease (PD). In yeast α-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER→Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER→Golgi trafficking. The homologous Rab1 rescues α-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of α-syn pathobiology. In a cell-free system with purified transport factors α-syn inhibited ER→Golgi trafficking in an α-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of α-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with α-syn and with diverse vesicle markers, suggesting that α-syn can impair multiple trafficking steps. Other Rabs did not ameliorate α-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, α-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive.


Science | 2015

Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

Elizabeth T. Cirulli; Brittany N. Lasseigne; Slavé Petrovski; Peter C. Sapp; Patrick A. Dion; Claire S. Leblond; Julien Couthouis; Yi Fan Lu; Quanli Wang; Brian Krueger; Zhong Ren; Jonathan Keebler; Yujun Han; Shawn Levy; Braden E. Boone; Jack R. Wimbish; Lindsay L. Waite; Angela L. Jones; John P. Carulli; Aaron G. Day-Williams; John F. Staropoli; Winnie Xin; Alessandra Chesi; Alya R. Raphael; Diane McKenna-Yasek; Janet Cady; J.M.B.Vianney de Jong; Kevin Kenna; Bradley Smith; Simon Topp

New players in Lou Gehrigs disease Amyotrophic lateral sclerosis (ALS), often referred to as “Lou Gehrigs disease,” is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Cirulli et al. sequenced the expressed genes of nearly 3000 ALS patients and compared them with those of more than 6000 controls (see the Perspective by Singleton and Traynor). They identified several proteins that were linked to disease in patients. One such protein, TBK1, is implicated in innate immunity and autophagy and may represent a therapeutic target. Science, this issue p. 1436; see also p. 1422 Analysis of the expressed genes of nearly 2900 patients with amyotrophic lateral sclerosis and about 6400 controls reveals a disease predisposition–associated gene. [Also see Perspective by Singleton and Traynor] Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Journal of Cell Biology | 2013

Stress granules as crucibles of ALS pathogenesis

Yun R. Li; Oliver D. King; James Shorter; Aaron D. Gitler

Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity.

Brian S. Johnson; J. Michael McCaffery; Susan Lindquist; Aaron D. Gitler

Protein misfolding is intimately associated with devastating human neurodegenerative diseases, including Alzheimers, Huntingtons, and Parkinsons. Although disparate in their pathophysiology, many of these disorders share a common theme, manifested in the accumulation of insoluble protein aggregates in the brain. Recently, the major disease protein found in the pathological inclusions of two of these diseases, amyotrophic lateral sclerosis (ALS) and frontal temporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), was identified as the 43-kDa TAR–DNA-binding protein (TDP-43), providing a molecular link between them. TDP-43 is a ubiquitously expressed nuclear protein that undergoes a pathological conversion to an aggregated cytoplasmic localization in affected regions of the nervous system. Whether TDP-43 itself can convey toxicity and whether its abnormal aggregation is a cause or consequence of pathogenesis remain unknown. We report a yeast model to define mechanisms governing TDP-43 subcellular localization and aggregation. Remarkably, this simple model recapitulates several salient features of human TDP-43 proteinopathies, including conversion from nuclear localization to cytoplasmic aggregation. We establish a connection between this aggregation and toxicity. The pathological features of TDP-43 are distinct from those of yeast models of other protein-misfolding diseases, such as polyglutamine. This suggests that the yeast model reveals specific aspects of the underlying biology of the disease protein rather than general cellular stresses associated with accumulating misfolded proteins. This work provides a mechanistic framework for investigating the toxicity of TDP-43 aggregation relevant to human disease and establishes a manipulable, high-throughput model for discovering potential therapeutic strategies.


Yeast | 2007

A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae.

Simon Alberti; Aaron D. Gitler; Susan Lindquist

In the post‐genomic era, academic and biotechnological research is increasingly shifting its attention from single proteins to the analysis of complex protein networks. This change in experimental design requires the use of simple and experimentally tractable organisms, such as the unicellular eukaryote Saccharomyces cerevisiae, and a range of new high‐throughput techniques. The Gateway® system has emerged as a powerful high‐throughput cloning method that allows for the in vitro recombination of DNA with high speed, accuracy and reliability. Two Gateway‐based libraries of overexpression plasmids containing the entire complement of yeast open reading frames (ORFs) have recently been completed. In order to make use of these powerful resources, we adapted the widely used pRS series of yeast shuttle vectors for use in Gateway‐based cloning. The resulting suite of 288 yeast Gateway vectors is based upon the two commonly used GPD and GAL1 promoter expression systems that enable expression of ORFs, either constitutively or under galactose‐inducible conditions. In addition, proteins of interest can be fused to a choice of frequently used N‐ or C‐terminal tags, such as EGFP, ECFP, EYFP, Cerulean, monomeric DsRed, HA or TAP. We have made this yeast Gateway® vector kit available to the research community via the non‐profit Addgene Plasmid Repository (http://www.addgene.org/yeast_gateway). Copyright


Journal of Clinical Investigation | 2003

Cardiac hypertrophy and histone deacetylase–dependent transcriptional repression mediated by the atypical homeodomain protein Hop

Hyun Kook; John J. Lepore; Aaron D. Gitler; Min Min Lu; Wendy W. Yung; Joel P. Mackay; Rong Zhou; Victor A. Ferrari; Peter J. Gruber; Jonathan A. Epstein

Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. Repression of antihypertrophic pathways has rarely been demonstrated to cause cardiac hypertrophy in vivo. Hop is an unusual homeodomain protein that is expressed by embryonic and postnatal cardiac myocytes. Unlike other homeodomain proteins, Hop does not bind DNA. Rather, it modulates cardiac growth and proliferation by inhibiting the transcriptional activity of serum response factor (SRF) in cardiomyocytes. Here we show that Hop can inhibit SRF-dependent transcriptional activation by recruiting histone deacetylase (HDAC) activity and can form a complex that includes HDAC2. Transgenic mice that overexpress Hop develop severe cardiac hypertrophy, cardiac fibrosis, and premature death. A mutant form of Hop, which does not recruit HDAC activity, does not induce hypertrophy. Treatment of Hop transgenic mice with trichostatin A, an HDAC inhibitor, prevents hypertrophy. In addition, trichostatin A also attenuates hypertrophy induced by infusion of isoproterenol. Thus, chromatin remodeling and repression of otherwise active transcriptional processes can result in hypertrophy and heart failure, and this process can be blocked with chemical HDAC inhibitors.

Collaboration


Dive into the Aaron D. Gitler's collaboration.

Top Co-Authors

Avatar

James Shorter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Epstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Lindquist

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Hart

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nancy M. Bonini

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alessandra Chesi

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver D. King

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge