Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron D. Gross is active.

Publication


Featured researches published by Aaron D. Gross.


Journal of Agricultural and Food Chemistry | 2014

Biopesticides: state of the art and future opportunities.

James N. Seiber; Joel R. Coats; Stephen O. Duke; Aaron D. Gross

The use of biopesticides and related alternative management products is increasing. New tools, including semiochemicals and plant-incorporated protectants (PIPs), as well as botanical and microbially derived chemicals, are playing an increasing role in pest management, along with plant and animal genetics, biological control, cultural methods, and newer synthetics. The goal of this Perspective is to highlight promising new biopesticide research and development (R&D), based upon recently published work and that presented in the American Chemical Society (ACS) symposium Biopesticides: State of the Art and Future Opportunities, as well as the authors own perspectives. Although the focus is on biopesticides, included in this Perspective is progress with products exhibiting similar characteristics, namely those naturally occurring or derived from natural products. These are target specific, of low toxicity to nontarget organisms, reduced in persistence in the environment, and potentially usable in organic agriculture. Progress is being made, illustrated by the number of biopesticides and related products in the registration pipeline, yet major commercial opportunities exist for new bioherbicides and bionematicides, in part occasioned by the emergence of weeds resistant to glyphosate and the phase-out of methyl bromide. The emergence of entrepreneurial start-up companies, the U.S. Environmental Protection Agency (EPA) fast track for biopesticides, and the availability of funding for registration-related R&D for biorational pesticides through the U.S. IR-4 program provide incentives for biopesticide development, but an expanded effort is warranted both in the United States and worldwide to support this relatively nascent industry.


Pest Management Science | 2013

The Phenolic Monoterpenoid Carvacrol Inhibits the Binding of Nicotine to the Housefly Nicotinic Acetylcholine Receptor

Fan Tong; Aaron D. Gross; Marc C. Dolan; Joel R. Coats

BACKGROUNDnThe phenolic monoterpenoid carvacrol, which is found in many plant essential oils (thyme, oregano and Alaska yellow cedar), is highly active against pest arthropods, but its mechanisms of action are not fully understood. Here, carvacrol is shown to bind in a membrane preparation containing insect nicotinic acetylcholine receptors (nAChRs). [(14) C]-Nicotine binding assays with Musca domestica (housefly) nAChRs were used in this study to demonstrate carvacrols binding to nAChRs, thereby acting as a modulator of the receptors.nnnRESULTSnCarvacrol showed a concentration-dependent inhibition of [(14) C]-nicotine binding in a membrane preparation of housefly heads containing nAChRs, with IC50 = 1.4 μM, in a non-competitive pattern. Binding studies with neonicotinoid insecticides revealed that imidacloprid and thiamethoxam did not inhibit the binding of [(14) C]-nicotine, while dinotefuran, from the guanidine subclass of neonicotinoids, inhibited nicotine binding like carvacrol.nnnCONCLUSIONSnCarvacrol binds to housefly nAChRs at a binding site distinct from nicotine and acetylcholine, and the nAChRs are a possible target of carvacrol for its insecticidal activity.


Insect Biochemistry and Molecular Biology | 2015

Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus

Aaron D. Gross; Kevin G. Temeyer; Tim A. Day; Adalberto A. Pérez de León; Michael J. Kimber; Joel R. Coats

The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical acaricides including amitraz, a formamidine insecticide, which is proposed to activate octopamine receptors. Previous studies have identified a putative octopamine receptor from the southern cattle tick in Australia and the Americas. Furthermore, this putative octopamine receptor could play a role in acaricide resistance to amitraz. Recently, sequence data indicated that this putative octopamine receptor is probably a type-1 tyramine receptor (TAR1). In this study, the putative TAR1 was heterologously expressed in Chinese hamster ovary (CHO-K1) cells, and the expressed receptor resulted in a 39-fold higher potency for tyramine compared to octopamine. Furthermore, the expressed receptor was strongly antagonized by yohimbine and cyproheptadine, and mildly antagonized by mianserin and phentolamine. Tolazoline and naphazoline had agonistic or modulatory activity against the expressed receptor, as did the amitraz metabolite, BTS-27271; however, this was only observed in the presence of tyramine. The southern cattle ticks tyramine receptor may serve as a target for the development of anti-parasitic compounds, in addition to being a likely target of formamidine insecticides.


Environmental Science & Technology | 2013

Sorption and Photodegradation Processes Govern Distribution and Fate of Sulfamethazine in Freshwater−Sediment Microcosms

Keri L. Carstens; Aaron D. Gross; Thomas B. Moorman; Joel R. Coats

The antibiotic sulfamethazine can be transported from manured fields to surface water bodies. We investigated the degradation and fate of sulfamethazine in pond water using (14)C-phenyl-sulfamethazine in small pond water microcosms containing intact sediment and pond water. We found a 2.7-day half-life in pond water and 4.2-day half-life when sulfamethazine was added to the water (5 mg L(-1) initial concentration) with swine manure diluted to simulate runoff. Sulfamethazine dissipated exponentially from the water column, with the majority of loss occurring via movement into the sediment phase. Extractable sulfamethazine in sediment accounted for 1.9-6.1% of the applied antibiotic within 14 days and then declined thereafter. Sulfamethazine was transformed mainly into nonextractable sediment-bound residue (40-60% of applied radioactivity) and smaller amounts of photoproducts. Biodegradation, as indicated by metabolite formation and (14)CO2 evolution, was less significant than photodegradation. Two photoproducts accounted for 15-30% of radioactivity in the water column at the end of the 63-day study; the photoproducts were the major degradates in the aqueous and sediment phases. Other unidentified metabolites individually accounted for <7% of radioactivity in the water or sediment. Less than 3% of applied radioactivity was mineralized to (14)CO2. Manure input significantly increased sorption and binding of sulfamethazine residues to the sediment. These results show concurrent processes of photodegradation and sorption to sediment control aqueous concentrations and establish that sediment is a sink for sulfamethazine and sulfamethazine-related residues. Accumulation of the photoproducts and sulfamethazine in sediment may have important implications for benthic organisms.


Scientific Reports | 2016

An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria

Daniel R. Swale; Darren W. Engers; Sean R. Bollinger; Aaron D. Gross; Edna Alfaro Inocente; Emily Days; Fariba Kanga; Reed M. Johnson; Liu Yang; Jeffrey R. Bloomquist; Corey R. Hopkins; Peter M. Piermarini; Jerod S. Denton

Insecticide resistance is a growing threat to mosquito control programs around the world, thus creating the need to discover novel target sites and target-specific compounds for insecticide development. Emerging evidence suggests that mosquito inward rectifier potassium (Kir) channels represent viable molecular targets for developing insecticides with new mechanisms of action. Here we describe the discovery and characterization of VU041, a submicromolar-affinity inhibitor of Anopheles (An.) gambiae and Aedes (Ae.) aegypti Kir1 channels that incapacitates adult female mosquitoes from representative insecticide-susceptible and -resistant strains of An. gambiae (G3 and Akron, respectively) and Ae. aegypti (Liverpool and Puerto Rico, respectively) following topical application. VU041 is selective for mosquito Kir channels over several mammalian orthologs, with the exception of Kir2.1, and is not lethal to honey bees. Medicinal chemistry was used to develop an analog, termed VU730, which retains activity toward mosquito Kir1 but is not active against Kir2.1 or other mammalian Kir channels. Thus, VU041 and VU730 are promising chemical scaffolds for developing new classes of insecticides to combat insecticide-resistant mosquitoes and the transmission of mosquito-borne diseases, such as Zika virus, without harmful effects on humans and beneficial insects.


Pesticide Biochemistry and Physiology | 2015

Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae

James M. Mutunga; Troy D. Anderson; Derek T. Craft; Aaron D. Gross; Daniel R. Swale; Fan Tong; Dawn M. Wong; Paul R. Carlier; Jeffrey R. Bloomquist

Insecticide resistance in the malaria vector, Anopheles gambiae, is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a pseudo-pyrethroid. There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety.


Journal of Medical Entomology | 2015

Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae)

Edmund J. Norris; Aaron D. Gross; Brendan M. Dunphy; Steven Bessette; Lyric C. Bartholomay; Joel R. Coats

ABSTRACT Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD50 and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.


Bioorganic & Medicinal Chemistry Letters | 2015

Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase.

Eugene Camerino; Dawn M. Wong; Fan Tong; Florian Körber; Aaron D. Gross; Rafique Islam; Elisabet Viayna; James M. Mutunga; Jianyong Li; Maxim Totrov; Jeffrey R. Bloomquist; Paul R. Carlier

Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed.


Neurotoxicology | 2017

Toxicology of potassium channel-directed compounds in mosquitoes.

Nicholas R. Larson; Paul R. Carlier; Aaron D. Gross; Rafique Islam; Ming Ma; Baonan Sun; Maxim Totrov; Roopali Yadav; Jeffrey R. Bloomquist

HIGHLIGHTSPotassium channel blockers were toxic to mosquitoes.Muscle contraction effects were similar to classical compounds.Catechols depolarized muscle and blocked Kv2.1 channels.Catechols also caused melanization in Anopheles gambiae larvae. ABSTRACT Potential targets for new vector control insecticides are nerve and muscle potassium channels. In this study, the activities of known potassium channel blockers (4‐aminopyridine, quinidine, and tetraethylammonium) and the insecticide propoxur were compared to three experimental catechols and several other compounds against Anopheles gambiae and Aedes aegypti mosquitoes. Experimental catechol 1 was the most toxic experimental compound in all of the mortality assays conducted, but was at least 100‐fold and 39‐fold less toxic than propoxur against Ae. aegypti and An. gambiae, respectively. Injection treatment and synergist (piperonyl butoxide) bioassays found that catechol toxicity was not unduly impacted by cuticular transport or oxidative metabolism. Electrophysiological studies showed a decrease in amplitude of evoked muscle contractions, along with an increase in twitch duration at concentrations that increased basal muscle tension (mM). High concentration effects on basal muscle tension were matched by complete depolarization of the muscle membrane potential. Effects on muscle physiology and blockage of Kv2.1 potassium channels in patch clamp experiments were generally consistent with in vivo toxicity, except for 4‐aminopyridine, which suggest the involvement of other potassium channel subtypes. Extensive melanization of Anopheles larvae, but not Aedes larvae, occurred from exposure to catechol compounds. Interaction with the phenol oxidase system within insects may be the cause of this melanization, but any contribution to toxicity requires further investigation.


Insects | 2016

Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster

Sheena Francis; Jennina Taylor-Wells; Aaron D. Gross; Jeffrey R. Bloomquist

The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs) against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increased modestly in longer exposures, and affected larvae showed attenuated responses to probing without overt tremors, hyperexcitation, or convulsions. Acetazolamide and dichlorphenamide were toxic to adults when applied topically, but were of low potency and had an incomplete effect (<50% at 300 ng/mosquito) even after injection. Dichlorphenamide was also the most toxic compound when fed to adult mosquitoes, and they displayed loss of posture and occasionally prolonged fluttering of the wings. Co-exposure with 500 ng of the synergist piperonyl butoxide (PBO) increased the toxicity of dichlorphenamide ca. two-fold in feeding assays, indicating that low toxicity was not related to oxidative metabolism. Dichlorphenamide showed mild depolarizing and nerve discharge actions on insect neuromuscular and central nervous systems, respectively. These effects were increased in low buffer salines, indicating they were apparently related to loss of pH control in these tissues. Overall, sulfonamides displayed weak insecticidal properties on Aedes aegypti and are weak lead compounds.

Collaboration


Dive into the Aaron D. Gross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Tong

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyric C. Bartholomay

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge