Aaron Elbourne
University of Newcastle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron Elbourne.
ACS Nano | 2015
Aaron Elbourne; Samila McDonald; Kislon Voïchovsky; Frank Endres; Gregory G. Warr; Rob Atkin
Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer.
Chemical Communications | 2013
Aaron Elbourne; James Sweeney; Grant B. Webber; Erica J. Wanless; Gregory G. Warr; Mark W. Rutland; Rob Atkin
Surface-adsorbed and near-surface ion layer structure controls nanotribology in the silica-propylammonium nitrate (PAN)-mica system. Atomic Force Microscopy (AFM) imaging and normal force curves reveal that the normal load dictates the number of interfacial ion layers and the lateral layer structure. Shear force measurements show the lubricity of the interface changes with the number, and lateral structure, of the confined ion layer(s).
Nanoscale | 2014
Alister J. Page; Aaron Elbourne; Ryan Stefanovic; Matthew Addicoat; Gregory G. Warr; Kislon Voïtchovsky; Rob Atkin
In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.
Journal of Colloid and Interface Science | 2017
Aaron Elbourne; Russell J. Crawford; Elena P. Ivanova
The scientific and industrial interest in antimicrobial surfaces has significantly increased in recent times. This interest is largely in response to the persistent microbial contamination of industrial and, importantly, medical implant surfaces. Bacterial contamination of implant surfaces often leads to infection at the implant-tissue interface, and with the prevalence of increasing levels of antimicrobial resistance, the treatment of these infections is becoming far more challenging. Recently, many naturally occurring, high-aspect-ratio surface topographies have been discovered that exhibit high levels of biocidal efficacy. These include epicuticular lipid nano-architectures that are formed on the surfaces of insect wings, such as cicadae and dragonflies. The antimicrobial activity of such surfaces has been found to be a consequence of the physical interactions between the nanoscale topography of the substrate and the attaching pathogenic cells, meaning that the activity is independent of biochemical surface functionality. Importantly, these desirable surface properties can be translated to synthetic biomimetic surfaces, which, when mimicked, lead to a substantial increase in the antimicrobial properties of such surfaces. This paper reviews the recent advances in understanding the basis of these mechanical antimicrobial mechanisms, and discusses the progress being made towards the fabrication of optimised, biocompatible, synthetic analogues.
Journal of Physical Chemistry Letters | 2016
Aaron Elbourne; Ben McLean; Kislon Voïtchovsky; Gregory G. Warr; Rob Atkin
All reported methods of graphene exfoliation require external energy input, most commonly from sonication,1 shaking,2 or stirring.3 The reverse process-aggregation of single or few layer graphene sheets-occurs spontaneously in most solvents. This makes producing, and especially storing, graphene in economic quantities challenging,4,5 which is a significant barrier to widespread commercialization. This study reveals ionic liquids (ILs) can spontaneously exfoliate graphene from graphite at room temperature. The process is thermally activated and follows an Arrhenius-type behavior, resulting in thermodynamically stable IL/graphene suspensions. Using atomic force microscopy, the kinetics of the exfoliation could be followed in situ and with subnanometer resolution, showing that both the size and the charge of the constituent IL ions play a key role. Our results provide a general molecular mechanism underpinning spontaneous graphene exfoliation at room temperature in electrically conducting ILs, paving the way for their adoption in graphene-based technology.
Nanoscale Advances | 2018
Aaron Elbourne; Victoria E. Coyle; Vi Khanh Truong; Ylias M. Sabri; Ahmad Esmaielzadeh Kandjani; Suresh K. Bhargava; Elena P. Ivanova; Russell J. Crawford
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Journal of Colloid and Interface Science | 2019
Aaron Elbourne; Madeleine F. Dupont; Simon Collett; Vi Khanh Truong; XiuMei Xu; Nandi Vrancken; Vladimir A. Baulin; Elena P. Ivanova; Russell J. Crawford
The interface between water and a textured hydrophobic surface can exist in two regimes; either the Wenzel (surface-engulfed) or Cassie-Baxter (water-suspended) state. Better understanding of the influence of pattern geometry and spacing is crucial for the design of functional (super)hydrophobic surfaces, as inspired by numerous examples in nature. In this work, we have employed amplitude modulated - atomic force microscopy to visualize the air-water interface with an unprecedented degree of clarity on a superhydrophobic and a highly hydrophobic nanostructured surface. The images obtained provide the first real-time experimental visualization of the Cassie-Baxter wetting on the surface of biomimetic silicon nanopillars and a naturally superhydrophobic cicada wing. For both surfaces, the air-water interface was found to be remarkably well-defined, revealing a distinctly nanostructured air-water interface in the interstitial spacing. The degree of interfacial texture differed as a function of surface geometry. These results reveal that the air-water interface is heterogeneous in its structure and confirmed the presence of short-range interfacial ordering. Additionally, the overpressure values for each point on the interface were calculated, quantifying the difference in wetting behavior for the biomimetic and natural surface. Results suggest that highly-ordered, closely spaced nanofeatures facilitate robust Cassie-Baxter wetting states and therefore, can enhance the stability of (super)hydrophobic surfaces.
Physical Chemistry Chemical Physics | 2013
Juan José Segura; Aaron Elbourne; Erica J. Wanless; Gregory G. Warr; Kislon Voïtchovsky; Rob Atkin
Chemical Science | 2015
Aaron Elbourne; Kislon Voïtchovsky; Gregory G. Warr; Rob Atkin
Nanoscale | 2016
Samila McDonald; Aaron Elbourne; Gregory G. Warr; Rob Atkin