Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron F. Heneghan is active.

Publication


Featured researches published by Aaron F. Heneghan.


Cell Host & Microbe | 2015

Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

Vanessa Leone; Sean M. Gibbons; Kristina Martinez; Alan L. Hutchison; Edmond Y. Huang; Candace M. Cham; Joseph F. Pierre; Aaron F. Heneghan; Anuradha Nadimpalli; Nathaniel Hubert; Elizabeth Zale; Yunwei Wang; Yong Huang; Betty Theriault; Aaron R. Dinner; Mark W. Musch; Kenneth A. Kudsk; Brian J. Prendergast; Jack A. Gilbert; Eugene B. Chang

Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet.


Journal of Parenteral and Enteral Nutrition | 2014

Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion.

Aaron F. Heneghan; Joseph F. Pierre; Kanokwan Tandee; Dhanansayan Shanmuganayagam; Xinying Wang; Jess D. Reed; James L. Steele; Kenneth A. Kudsk

INTRODUCTION Parenteral nutrition (PN) increases the risk of infection in patients with contraindication to enteral feeding. Paneth cells produce and secrete antimicrobial products that protect the mucosa from pathogens. Their loss is associated with increased host-pathogen interactions, mucosal inflammation, and altered microbiome composition. HYPOTHESIS We hypothesized that PN reduces Paneth cell product expression, and these changes would reduce bactericidal properties of tissue secretions following cholinergic stimulation, increase mucosal enteroinvasion, and shift the intestinal microbiome. METHOD Experiment 1: Male ICR mice were randomized to Chow (n = 8) or PN (n = 8). Ileum tissue was collected for Paneth cell antimicrobial expression using RT-PCR, stimulated with a cholinergic agonist degranulate Paneth cells bactericidal activity, or used to assess bacterial enteroinvasion in EVISC. Experiment 2: Mice were randomized to Chow (n = 11) or PN (n = 8) and ileum washing was collected for 16s pyrosequencing analysis. RESULTS Compared to Chow, PN decreased tissue expression of REGIII-g (p < 0.002), lysozyme (p < 0.002), and cryptdin-4 (p < 0.03). At the phylum level, PN decreased total Firmicutes but increased total Bacteroidetes, and Proteobacteria. Functionally, secretions from PN tissue was less bactericidal (p < 0.03) and demonstrated increased susceptibility to enteroinvasion by E coli (p < 0.02). CONCLUSION PN without enteral nutrition impairs innate mucosal immune function. Tissue expression of Paneth cell antimicrobial proteins decreases associated with compositional shifts to the microbiome, decreased bactericidal activity of mucosal secretions and greater susceptibility of to enteroinvasion by E coli. These changes may explain in-part the increased risk of infection in parenterally fed patients.


Journal of Parenteral and Enteral Nutrition | 2013

Cranberry Proanthocyanidins Improve the Gut Mucous Layer Morphology and Function in Mice Receiving Elemental Enteral Nutrition

Joseph F. Pierre; Aaron F. Heneghan; Rodrigo P. Feliciano; Dhanansayan Shanmuganayagam; Drew A. Roenneburg; Christian G. Krueger; Jess D. Reed; Kenneth A. Kudsk

BACKGROUND Lamina propria Th2 cytokines, interleukin (IL)-4 and IL-13, stimulate goblet cell (GC) proliferation and MUC2 production, which protect the intestinal mucosa. Elemental enteral nutrition (EEN) reduces tissue IL-4 and impairs barrier function. Proanthocyanidins (PACs) stimulate oral mucin levels. We hypothesized that adding PAC to EEN would maintain Th2-without stimulating Th1-cytokines and preserve luminal MUC2 vs EEN alone. MATERIALS AND METHODS Seventy mice were randomized to 5 diet groups-standard chow, intragastric EEN, or EEN with lowPAC, midPAC (50 mg), or highPAC (100 mg PAC/kg BW)-for 5 days, starting 2 days after gastric cannulation. Ileal tissue was analyzed for histomorphology and the cytokines IL-4, IL-13, IL-1β, IL-6, and TNF-α by enzyme-linked immunosorbent assay. MUC2 was measured in intestinal washes. RESULTS EEN lowered IL-13 (P < .05) compared with standard chow, whereas IL-4 was not significant (P < .07). LowPAC and midPAC increased IL-13 (P < .05), whereas highPAC increased both IL-4 and IL-13 (P < .05) compared with EEN. All EEN diets reduced (P < .05) crypt depth compared with the chow group. Compared with standard chow, GC numbers and luminal MUC2 were reduced with EEN (P < .05). These effects were attenuated (P < .05) with midPAC and highPAC. No changes were observed in tissue Th1 cytokines. CONCLUSIONS Adding PACs to EEN reverses impaired intestinal barrier function following EEN by improving the gut mucous layer and function through increased GC size and number as well as levels of MUC2 and ileal IL-4 and IL-13.


Journal of Pediatric Surgery | 2014

Intestinal Dysbiosis and Bacterial Enteroinvasion in a Murine Model of Hirschsprung’s Disease

Joseph F. Pierre; Amanda J. Barlow-Anacker; Christopher S. Erickson; Aaron F. Heneghan; Glen Leverson; Scot E. Dowd; Miles L. Epstein; Kenneth A. Kudsk; Ankush Gosain

BACKGROUND/PURPOSE Hirschsprungs disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprungs-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in an HSCR model. METHODS Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16-18 and P21-24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of Escherichia coli into ileal explants was measured using an ex vivo organ culture system. RESULTS EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16-18. However, by P21-24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. CONCLUSIONS Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC.


Surgery | 2013

Parenteral Nutrition Suppresses the Bactericidal Response of the Small Intestine

Jiro Omata; Joseph F. Pierre; Aaron F. Heneghan; Francis H.C. Tsao; Yoshifumi Sano; Mark A. Jonker; Kenneth A. Kudsk

BACKGROUND Parenteral nutrition (PN) increases infectious risk in critically ill patients compared with enteral feeding. Previously, we demonstrated that PN feeding suppresses the concentration of the Paneth cell antimicrobial protein secretory phospholipase A2 (sPLA2) in the gut lumen. sPLA2 and other Paneth cell proteins are released in response to bacterial components, such as lipopolysaccharide (LPS), and they modulate the intestinal microbiome. Because the Paneth cell protein sPLA2 was suppressed with PN feeding, we hypothesized PN would diminish the responsiveness of the small bowel to LPS through reduced secretions and as a result exhibit less bactericidal activity. METHODS The distal ileum was harvested from Institute of Cancer Research mice, washed, and randomized for incubation with LPS (0, 1, or 10 μg/mL). Culture supernatant was collected and sPLA2 activity was measured. Bactericidal activity of the ileum segment secretions was assessed against Pseudomonas aeruginosa with and without an sPLA2 inhibitor at 2 concentrations, 100 nmol/L and 1 μmol/L. Institute of Cancer Research mice were randomized to chow or PN for 5 days. Tissue was collected for immunohistochemistry (IHC) and ileal segments were incubated with LPS (0 or 10 μg/mL). sPLA2 activity and bactericidal activity were measured in secretions from ileal segments. RESULTS Ileal segments responded to 10 μg/mL LPS with significantly greater sPLA2 activity and bactericidal activity. The bactericidal activity of secretions from LPS stimulated tissue was suppressed 50% and 70%, respectively, with the addition of the sPLA2-inhibitor. Chow displayed greater sPLA2 in the Paneth cell granules and secreted higher levels of sPLA2 than PN before and after LPS. Accordingly, media collected from chow was more bactericidal than PN. IHC confirmed a reduction in Paneth cell granules after PN. CONCLUSION This work demonstrates that ileal segments secrete bactericidal secretions after LPS exposure and the inhibition of the Paneth cell antimicrobial protein sPLA2 significantly diminishes this. PN feeding resulted in suppressed secretion of the sPLA2 and resulted in increased bacterial survival. This demonstrates that PN significantly impairs the innate immune response by suppressing Paneth cell function.


Neurogastroenterology and Motility | 2013

Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung's disease.

Ismail Zaitoun; Christopher S. Erickson; Amanda J. Barlow; Taylor R. Klein; Aaron F. Heneghan; Joseph F. Pierre; Miles L. Epstein; Ankush Gosain

Hirschsprungs disease (HSCR) is a congenital condition in which enteric ganglia, formed from neural crest cells (NCC), are absent from the terminal bowel. Dysmotility and constipation are common features of HSCR that persist following surgical intervention. This persistence suggests that the portion of the colon that remains postoperatively is not able to support normal bowel function. To elucidate the defects that underlie this condition, we utilized a murine model of HSCR.


JAK-STAT | 2013

JAK-STAT and intestinal mucosal immunology

Aaron F. Heneghan; Joseph F. Pierre; Kenneth A. Kudsk

The intestinal mucosal immune system is challenged with bacteria, viruses, and parasites, in addition to food and environmental antigens, that require dynamic immune responsiveness for homeostasis. One central signaling pathway is JAK-STAT, which regulates the adaptive and innate immune arms of mucosal immunity as well as epithelial repair and regeneration. Adaptive immunity includes lymphocyte mediated secretion of specific antibodies, while innate immune respones include secretion of non-antigen specific compounds. This review examines effects of specialized nutrition support on JAK-STAT in innate immune function and in lymphocyte modulation and epithelial antibody transport in gut-associated lymphoid tissue.


Surgery | 2012

Small intestine mucosal immune system response to injury and the impact of parenteral nutrition.

Mark A. Jonker; Joshua L. Hermsen; Yoshifumi Sano; Aaron F. Heneghan; Jinggang Lan; Kenneth A. Kudsk

BACKGROUND Both humans and mice increase airway immunoglobulin A (IgA) after injury. This protective response is associated with TNF-α, IL-1β, and IL-6 airway increases and in mice is dependent upon these cytokines as well as enteral feeding. Parenteral nutrition (PN) with decreased enteral stimulation (DES) alters gut barrier function, decreases intestinal IgA, and decreases the principal IgA transport protein pIgR. We investigated the small intestine (SI) IgA response to injury and the role of TNF-α, IL-1β, IL-6, and PN/DES. METHODS Expt 1: Murine kinetics of SI washing fluid (SIWF) IgA; SI, SIWF and serum TNF-α, IL-1β, and IL-6, was determined by ELISA from 0 to 8 hours after a limited surgical stress injury (laparotomy and neck incisions). Expt 2: Mice received chow or PN/DES before injury and SIWF IgA and SI pIgR levels were determined at 0 and 8 hours. Expt 3: Mice received PBS, TNF-α antibody, or IL-1β antibody 30 minutes before injury to measure effects on the SIWF IgA response. Expt 4: Mice received injury or exogenous TNF-α, IL-1β, and IL-6 to measure effects on the SIWF IgA response. RESULTS Expt 1: SIWF IgA levels increased significantly by 2 hours after injury without associated increases in TNF-α or IL-1β whereas IL-6 was only increased at 1 hour after injury. Expt 2: PN/DES significantly reduced baseline SIWF IgA and SI pIgR and eliminated their increase after injury seen in Chow mice. Expt 3: TNF-α and IL-1β blockade did not affect the SIWF IgA increase after injury. Expt 4: Exogenous TNF-α, IL-1β, and IL-6 increased SIWF IgA similarly to injury. CONCLUSION The SI mucosal immune responds to injury or exogenous TNF-α, IL-1β, and IL-6 with an increase in lumen IgA, although it does not rely on local SI increases in TNF-α or IL-1β as it does in the lung. Similar to the lung, the IgA response is eliminated with PN/DES.


PLOS ONE | 2015

Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung’s Disease

Ankush Gosain; Amanda J. Barlow-Anacker; C.S. Erickson; Joseph F. Pierre; Aaron F. Heneghan; Miles L. Epstein; Kenneth A. Kudsk

Hirschsprung’s disease (HSCR) is characterized by aganglionosis from failure of neural crest cell (NCC) migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung’s-associated enterocolitis (HAEC), with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI) mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrB NCC-/-) resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P) 21–24, prior to histological signs of enterocolitis. We found that EdnrB NCC-/- display lymphopenia of their Peyer’s Patches, the major inductive site of GI mucosal immunity. EdnrB NCC-/- Peyer’s Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature) B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrB NCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrB NCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrB NCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrB NCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted to the aganglionic colon but extend proximally, even into the ganglionated small intestine and immune cells.


Annals of Surgery | 2014

IL-25 improves luminal innate immunity and barrier function during parenteral nutrition

Aaron F. Heneghan; Joseph F. Pierre; Ankush Gosain; Kenneth A. Kudsk

Background:Parenteral nutrition (PN) increases risks of infections in critically injured patients. Recently, PN was shown to reduce intestine luminal levels of the Paneth cell antimicrobial molecule secretory phospholipase A2 (sPLA2) and the goblet cell glycoprotein mucin2 (MUC2). These molecules are critical factors for innate mucosal immunity and provide barrier protection. Interleukin-4 (IL-4) and IL-13 regulate sPLA2 and MUC2 production through the IL-13 receptor. Because IL-25 stimulates IL-4 and IL-13 release and PN reduces luminal sPLA2 and MUC2, we hypothesized that adding IL-25 to PN would restore these innate immune factors and maintain barrier function. Methods:Two days after venous cannulation, male ICR (Institute of Cancer Research) mice were randomized to receive chow (n = 12), PN (n = 9), or PN + 0.7 &mgr;g of exogenous IL-25 (n = 11) daily for 5 days. Small-intestine wash fluid (SIWF) was collected for analysis of sPLA2 activity, MUC2 density, and luminal levels of IL-4 and IL-13. Small-intestinal tissue was harvested for analysis of tissue sPLA2 activity or immediate use in an ex-vivo intestinal segment culture (EVISC) to assess susceptibility of the tissue segments to enteroinvasive Escherichia coli. Results:PN reduced luminal sPLA2 (P < 0.0001) and MUC2 (P <0.002) compared with chow, whereas the addition of IL-25 to PN increased luminal sPLA2 (P < 0.0001) and MUC2 (P < 0.02) compared with PN. Tissue IL-4 and IL-13 decreased with PN compared with chow (IL-4: P < 0.0001, IL-13: P < 0.002), whereas IL-25 increased both cytokines compared with PN (IL-4: P < 0.03, IL-13: P < 0.02). Tissue levels of sPLA2 were significantly decreased with PN compared with chow, whereas IL-25 significantly increased tissue sPLA2 levels compared with PN alone. Functionally, more bacteria invaded the PN-treated tissue compared with chow (P < 0.01), and the addition of IL-25 to PN decreased enteroinvasion to chow levels (P < 0.01). Conclusions:PN impairs innate mucosal immunity by suppressing luminal sPLA2 activity and MUC2 density compared with chow. PN also increases bacterial invasion in ex-vivo tissue. Administration of exogenous IL-25 reverses this dysfunction and increases luminal sPLA2 and MUC2. PN tissue treated with IL-25 was significantly more resistant to bacterial invasion than with PN alone, suggesting that IL-25-induced effects augment the barrier defense mechanisms.

Collaboration


Dive into the Aaron F. Heneghan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth A. Kudsk

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Jonker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Miles L. Epstein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rebecca A. Busch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jess D. Reed

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xinying Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yoshifumi Sano

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge