Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Fait is active.

Publication


Featured researches published by Aaron Fait.


Plant Physiology | 2006

Arabidopsis seed development and germination is associated with temporally distinct metabolic switches

Aaron Fait; Ruthie Angelovici; Hadar Less; Itzhak Ohad; Ewa Urbanczyk-Wochniak; Alisdair R. Fernie; Gad Galili

While the metabolic networks in developing seeds during the period of reserve accumulation have been extensively characterized, much less is known about those present during seed desiccation and subsequent germination. Here we utilized metabolite profiling, in conjunction with selective mRNA and physiological profiling to characterize Arabidopsis (Arabidopsis thaliana) seeds throughout development and germination. Seed maturation was associated with a significant reduction of most sugars, organic acids, and amino acids, suggesting their efficient incorporation into storage reserves. The transition from reserve accumulation to seed desiccation was associated with a major metabolic switch, resulting in the accumulation of distinct sugars, organic acids, nitrogen-rich amino acids, and shikimate-derived metabolites. In contrast, seed vernalization was associated with a decrease in the content of several of the metabolic intermediates accumulated during seed desiccation, implying that these intermediates might support the metabolic reorganization needed for seed germination. Concomitantly, the levels of other metabolites significantly increased during vernalization and were boosted further during germination sensu stricto, implying their importance for germination and seedling establishment. The metabolic switches during seed maturation and germination were also associated with distinct patterns of expression of genes encoding metabolism-associated gene products, as determined by semiquantitative reverse transcription-polymerase chain reaction and analysis of publicly available microarray data. When taken together our results provide a comprehensive picture of the coordinated changes in primary metabolism that underlie seed development and germination in Arabidopsis. They furthermore imply that the metabolic preparation for germination and efficient seedling establishment initiates already during seed desiccation and continues by additional distinct metabolic switches during vernalization and early germination.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants

Nicolas Bouché; Aaron Fait; David Bouchez; Simon Geir Møller; Hillel Fromm

The γ-aminobutyrate (GABA) shunt is a metabolic pathway that bypasses two steps of the tricarboxylic acid cycle, and it is present in both prokaryotes and eukaryotes. In plants the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase and the mitochondrial enzymes GABA transaminase and succinic-semialdehyde dehydrogenase (SSADH). The activity of the GABA shunt in plants is rapidly enhanced in response to various biotic and abiotic stresses. However the physiological role of this pathway remains obscure. To elucidate its role in plants, we analyzed Arabidopsis T-DNA knockout mutants of SSADH, the ultimate enzyme of the pathway. Four alleles of the ssadh mutation were isolated, and these exhibited a similar phenotype. When exposed to white light (100 μmol of photons per m2 per s), they appear dwarfed with necrotic lesions. Detailed spectrum analysis revealed that UV-B has the most adverse effect on the mutant phenotype, whereas photosynthetic active range light has a very little effect. The ssadh mutants are also sensitive to heat, as they develop necrosis when submitted to such stress. Moreover, both UV and heat cause a rapid increase in the levels of hydrogen peroxide in the ssadh mutants, which is associated with enhanced cell death. Surprisingly, our study also shows that trichomes are hypersensitive to stresses in ssadh mutants. Our work establishes a role for the GABA shunt in preventing the accumulation of reactive oxygen intermediates and cell death, which appears to be essential for plant defense against environmental stress.


Plant Physiology | 2008

Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development

Aaron Fait; Kati Hanhineva; Romina Beleggia; Nir Dai; Ilana Rogachev; Victoria J. Nikiforova; Alisdair R. Fernie; Asaph Aharoni

The anatomy of strawberry (Fragaria × ananassa) fruit, in which the achene is found on the outer part of the fruit, makes it an excellent species for studying the regulation of fruit development. It can provide a model for the cross talk between primary and secondary metabolism, whose role is of pivotal importance in the process. By combining gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry with the aim of addressing the metabolic regulation underlying fruit seed development, we simultaneously analyzed the composition of primary and secondary metabolites, separately, in achene and receptacle during fruit ripening of strawberry cultivar Herut. The results from these analyses suggest that changes in primary and secondary metabolism reflect organ and developmental specificities. For instance, the receptacle was characterized by increases in sugars and their direct derivatives, while the achene was characterized by a major decrease in the levels of carbon- and nitrogen-rich compounds, with the exception of storage-related metabolites (e.g. raffinose). Furthermore, the receptacle, and to a lesser extent the achene, exhibited dynamic fluctuations in the levels and nature of secondary metabolites across the ripening process. In the receptacle, proanthocyanidins and flavonol derivatives characterized mainly early developmental stages, while anthocyanins were abundant in the mature red stage; in the achene, ellagitannin and flavonoids were abundant during early and late development, respectively. Correlation-based network analysis suggested that metabolism is substantially coordinated during early development in either organ. Nonetheless, a higher degree of connectivity within and between metabolic pathways was measured in the achenes. The data are discussed within the context of current models both of the interaction of primary and secondary metabolism and of the metabolic interaction between the different plant organs.


Trends in Plant Science | 2010

Seed desiccation: a bridge between maturation and germination

Ruthie Angelovici; Gad Galili; Alisdair R. Fernie; Aaron Fait

The development of orthodox seeds concludes by a desiccation phase. The dry seeds then enter a phase of dormancy, also called the after-ripening phase, and become competent for germination. We discuss physiological processes as well as gene expression and metabolic programs occurring during the desiccation phase in respect to their contribution to the desiccation tolerance, dormancy competence and successful germination of the dry seeds. The transition of developing seeds from the phase of reserve accumulation to desiccation is associated with distinct gene expression and metabolic switches. Interestingly, a significant proportion of the gene expression and metabolic signatures of seed desiccation resemble those characterizing seed germination, implying that the preparation of the seeds for germination begins already during seed desiccation.


Plant Physiology | 2007

Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the γ-Aminobutyrate Shunt in Illuminated Tomato Leaves

Claudia Studart-Guimarães; Aaron Fait; Adriano Nunes-Nesi; Fernando Carrari; Alisdair R. Fernie

Increasing experimental evidence suggests that the tricarboxylic acid cycle in plants is of greater importance in illuminated photosynthetic tissues than previously thought. In this study, transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the β-subunit of succinyl-coenzyme A ligase in either the antisense orientation or using the RNA interference approach, however, revealed little alteration in either photosynthesis or plant growth despite exhibiting dramatic reductions in activity. Moreover, the rate of respiration was only moderately affected in the transformants, suggesting that this enzyme does not catalyze a crucial step in mitochondrial respiration. However, metabolite and transcript profiling of these lines alongside enzyme and label redistribution experiments revealed that, whereas considerable activity of this enzyme appears to be dispensable, the reason for such a mild phenotype in extremely inhibited lines was an up-regulation of an alternative pathway for succinate production—that offered by the γ-aminobutyric acid shunt. When taken together, these data highlight the importance both of succinate production for mitochondrial metabolism and the interplay between various routes of its production. The results are discussed in the context of current models of plant respiration in mitochondrial and cellular metabolism of the illuminated leaf.


Plant Physiology | 2007

Reduced Expression of Succinyl CoA Ligase can be Compensated for by an Upregulation of the γ-amino-butyrate (GABA) Shunt in Illuminated Tomato Leaves

Claudia Studart-Guimarães; Aaron Fait; Adriano Nunes-Nesi; Fernando Carrari; Björn Usadel; Alisdair R. Fernie

Increasing experimental evidence suggests that the tricarboxylic acid cycle in plants is of greater importance in illuminated photosynthetic tissues than previously thought. In this study, transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the β-subunit of succinyl-coenzyme A ligase in either the antisense orientation or using the RNA interference approach, however, revealed little alteration in either photosynthesis or plant growth despite exhibiting dramatic reductions in activity. Moreover, the rate of respiration was only moderately affected in the transformants, suggesting that this enzyme does not catalyze a crucial step in mitochondrial respiration. However, metabolite and transcript profiling of these lines alongside enzyme and label redistribution experiments revealed that, whereas considerable activity of this enzyme appears to be dispensable, the reason for such a mild phenotype in extremely inhibited lines was an up-regulation of an alternative pathway for succinate production—that offered by the γ-aminobutyric acid shunt. When taken together, these data highlight the importance both of succinate production for mitochondrial metabolism and the interplay between various routes of its production. The results are discussed in the context of current models of plant respiration in mitochondrial and cellular metabolism of the illuminated leaf.


Plant Journal | 2008

Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism

Kathleen Weigelt; Helge Küster; Ruslana Radchuk; Martin Michael Müller; Heiko Weichert; Aaron Fait; Alisdair R. Fernie; Isolde Saalbach; Hans Weber

SUMMARY The application of nitrogen to legumes regulates seed metabolism and composition. We recently showed that the seed-specific overexpression of amino acid permease VfAAP1 increases amino acid supply, and the levels of N and protein in the seeds. Two consecutive field trials using Pisum sativum AAP1 lines confirmed increases in the levels of N and globulin in seed; however, compensatory changes of sucrose/starch and individual seed weight were also observed. We present a comprehensive analysis of AAP1 seeds using combinatorial transcript and metabolite profiling to monitor the effects of nitrogen supply on seed metabolism. AAP1 seeds have increased amino acids and stimulated gene expression associated with storage protein synthesis, maturation, deposition and vesicle trafficking. Transcript/metabolite changes reveal the channelling of surplus N into the transient storage pools asparagine and arginine, indicating that asparagine synthase is transcriptionally activated by high N levels and/or C limitation. Increased C-acceptor demand for amino acid synthesis, resulting from elevated levels of N in seeds, initiates sucrose mobilization and sucrose-dependent pathways via sucrose synthase, glycolysis and the TCA cycle. The AAP1 seeds display a limitation in C, which leads to the catabolism of arginine, glutamic acid and methionine to putrescine, beta-alanine and succinate. Mitochondria are involved in the coordination of C/N metabolism, with branched-chain amino acid catabolism and a gamma-amino-butyric acid shunt. AAP1 seeds contain higher levels of ABA, which is possibly involved in storage-associated gene expression and the N-dependent stimulation of sucrose mobilization, indicating that a signalling network of C, N and ABA is operating during seed maturation. These results demonstrate that legume seeds have a high capacity to regulate N:C ratios, and highlight the importance of mitochondria in the control of N-C balance and amino acid homeostasis.


FEBS Letters | 2005

GABA shunt deficiencies and accumulation of reactive oxygen intermediates : insight from Arabidopsis mutants

Aaron Fait; Ayelet Yellin; Hillel Fromm

In plants, succinic semialdehyde dehydrogenase (SSADH)‐deficiency results in the accumulation of reactive oxygen intermediates (ROI), necrotic lesions, dwarfism, and hypersensitivity to environmental stresses [Bouché, N., Fait, A., Moller, S.G. and Fromm, H. (2003) Proc. Natl. Acad. Sci. USA. 100, 6843–6848]. We report that Arabidopsis ssadh knockout mutants contain five times the normal level of γ‐hydroxybutyrate (GHB), which in SSADH‐deficient mammals accounts for phenotypic abnormalities. Moreover, the level of GHB in Arabidopsis is light dependent. Treatment with γ‐vinyl‐γ‐aminobutyrate, a specific γ‐aminobutyrate (GABA)‐transaminase inhibitor, prevents the accumulation of ROI and GHB in ssadh mutants, inhibits cell death, and improves growth. These results provide novel evidence for the relationship between the GABA shunt and ROI, which may, in part, explain the phenotype of SSADH‐deficient plants and animals.


Plant Journal | 2011

A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism

Simon Michaeli; Aaron Fait; Kelly Lagor; Adriano Nunes-Nesi; Nicole Grillich; Ayelet Yellin; Dana Bar; Munziba Khan; Alisdair R. Fernie; Frank J. Turano; Hillel Fromm

In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.


Critical Reviews in Plant Sciences | 2007

The Mitochondrion: An Integration Point of Cellular Metabolism and Signalling

Lee J. Sweetlove; Aaron Fait; Adriano Nunes-Nesi; Thomas C.R. Williams; Alisdair R. Fernie

In addition to efficient synthesis of ATP by oxidative phosphorylation, acquisition of the mitochondrial endosymbiont brought a whole range of new metabolic capabilities to the ancestral eukaryotic cell lineage such that the mitochondrion retains an important role in numerous anabolic and catabolic processes. While respiration dominates metabolism of the mitochondrion, this organelle is also important in the catabolism of amino acids and the provision of carbon skeletons for biosynthesis of a wide range of compounds including amino acids, vitamins, lipids, and tetrapyrroles. However, mitochondrial metabolism is best understood in the context of cellular metabolism as a whole; this is particularly true in auxotrophic organisms such as plants. For this reason understanding of the integration of mitochondrial metabolism with associated metabolic pathways in distinct cellular locations is of great importance. The examples of photorespiration, proline, cysteine, branched chain amino acid, ascorbate and folate metabolism all indicate that mitochondrial steps in these pathways are critical to their function and regulation. Moreover, the central metabolic position of the mitochondrion and its key roles in bioenergetics and redox regulation, additionally mean that it is ideally placed to act as a sensor of the biochemical status of the cell. When taken together these observations suggest that the myriad nonrespiratory functions of the mitochondria are of vast importance in the coordination of plant cellular metabolism and function.

Collaboration


Dive into the Aaron Fait's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Batushansky

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Asfaw Degu

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

David Toubiana

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shimon Rachmilevitch

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Uri Hochberg

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge