Aaron G. Schultz
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aaron G. Schultz.
Environmental Science & Technology | 2012
Aaron G. Schultz; Kimberly J. Ong; Tyson J. MacCormack; Guibin Ma; Jonathan G. C. Veinot; Greg G. Goss
The silver ion (Ag(+)) is well documented to be a potent inhibitor of sodium (Na(+)) transport in fish. However, it has not been determined whether silver nanoparticles (Ag NPs) elicit this same effect and, if so, if the NP itself and/or the dissociation of ionic Ag(+) causes this effect. Citrate-capped Ag NPs were dialyzed in water to determine the dissolution rate of ionic Ag(+) from the NPs and the maximum concentration of free Ag(+) released from the NPs was used as a paired Ag(+) control to distinguish NP effects from ionic metal effects. The maximum concentration of ionic Ag(+) released from these NPs over 48 h was 0.02 μg l(-1). Juvenile rainbow trout were exposed to 1.0 mg l(-1) citrate-capped Ag NPs and dialyzed citrate-capped Ag NPs or 10 μg l(-1) and 0.02 μg l(-1) ionic Ag(+) (as AgNO(3)) as controls. Both nondialyzed and dialyzed Ag NPs and 10 μg l(-1) ionic Ag(+) significantly inhibited unidirectional Na(+) influx by over 50% but had no effect on unidirectional Na(+) efflux. Na(+),K(+)-ATPase was significantly inhibited by the Ag NPs with no discernible effect on carbonic anhydrase activity. This study is the first to show that sodium regulation is disrupted by the presence of citrate-capped Ag NPs, and the results suggest that there are nanospecific effects.
Environmental Chemistry | 2014
Aaron G. Schultz; David Boyle; Danuta Chamot; Kimberly J. Ong; Kevin J. Wilkinson; James C. McGeer; Geoff Sunahara; Greg G. Goss
Environmental context The increased use of nanomaterials in industrial and consumer products requires robust strategies to identify risks when they are released into the environment. Aquatic toxicologists are beginning to possess a clearer understanding of the chemical and physical properties of nanomaterials in solution, and which of the properties potentially affect the health of aquatic organisms. This review highlights the main challenges encountered in aquatic nanotoxicity testing, provides recommendations for overcoming these challenges, and discusses recent studies that have advanced our understanding of the toxicity of three important OECD nanomaterials, titanium dioxide, zinc oxide and silver nanomaterials. Abstract Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.
The Journal of Experimental Biology | 2009
Chris M. Wood; Aaron G. Schultz; R. Stephen Munger; Patrick J. Walsh
SUMMARY After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H+, K+-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H+ (accompanied by Cl–) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5 mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pre-treatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl– concentration of the chyme and altered the patterns of other ions, indicating inhibition of H+ and accompanying Cl– secretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48 h. Arterial blood CO2 pressure (PaCO2) and plasma ions were not substantially altered. These results indicate that elevated gastric H+ secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014
Aaron G. Schultz; Samuel C. Guffey; Alexander M. Clifford; Greg G. Goss
Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ~0.23-0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish.
The Journal of Experimental Biology | 2015
Agnieszka K. Dymowska; David Boyle; Aaron G. Schultz; Greg G. Goss
ABSTRACT Acid-sensing ion channels (ASICs) are epithelial Na+ channels gated by external H+. Recently, it has been demonstrated that ASICs play a role in Na+ uptake in freshwater rainbow trout. Here, we investigate the potential involvement of ASICs in Na+ transport in another freshwater fish species, the zebrafish (Danio rerio). Using molecular and histological techniques we found that asic genes and the ASIC4.2 protein are expressed in the gill of adult zebrafish. Immunohistochemistry revealed that mitochondrion-rich cells positive for ASIC4.2 do not co-localize with Na+/K+-ATPase-rich cells, but co-localize with cells expressing vacuolar-type H+-ATPase. Furthermore, pharmacological inhibitors of ASIC and Na+/H+-exchanger significantly reduced uptake of Na+ in adult zebrafish exposed to low-Na+ media, but did not cause the same response in individuals exposed to ultra-low-Na+ water. Our results suggest that in adult zebrafish ASICs play a role in branchial Na+ uptake in media with low Na+ concentrations and that mechanisms used for Na+ uptake by zebrafish may depend on the Na+ concentration in the acclimation medium. Summary: Acid-sensing ion channels in zebrafish gill epithelium are involved in Na+ uptake.
General and Comparative Endocrinology | 2017
Alexander M. Clifford; Nicolas R. Bury; Aaron G. Schultz; James D. Ede; Brendan L. Goss; Greg G. Goss
The goal of this study was to identify whether Pacific hagfish (Eptatretus stoutii) possess glucocorticoid and mineralocorticoid responses and to examine the potential role(s) of four key steroids in these responses. Pacific hagfish were injected with varying amounts of cortisol, corticosterone or 11-deoxycorticosterone (DOC) using coconut oil implants and plasma glucose and gill total-ATPase activity were monitored as indices of glucocorticoid and mineralocorticoid responses. Furthermore, we also monitored plasma glucose and 11-deoxycortisol (11-DOC) levels following exhaustive stress (30 min of agitation) or following repeated infusion with SO42-. There were no changes in gill total-ATPase following implantation with any steroid, with only very small statistical increases in plasma glucose noted in hagfish implanted with either DOC (at 20 and 200mgkg-1 at 7 and 4days post-injection, respectively) or corticosterone (at 100mgkg-1 at 7days post-injection). Following exhaustive stress, hagfish displayed a large and sustained increase in plasma glucose. Repeated infusion of SO42- into hagfish caused increases in both plasma glucose levels and SO42- excretion rate suggesting a regulated glucocorticoid and mineralocorticoid response. However, animals under either condition did not show any significant increases in plasma 11-DOC concentrations. Our results suggest that while there are active glucocorticoid and mineralocorticoid responses in hagfish, 11-DOC does not appear to be involved and the identity and primary function of the steroid in hagfish remains to be elucidated.
The Journal of Experimental Biology | 2017
Alex R. Quijada-Rodriguez; Aaron G. Schultz; Jonathon M. Wilson; Yuhe He; Garrett J. P. Allen; Greg G. Goss; Dirk Weihrauch
ABSTRACT Freshwater organisms actively take up ions from their environment to counter diffusive ion losses due to inhabiting hypo-osmotic environments. The mechanisms behind active Na+ uptake are quite well understood in freshwater teleosts; however, the mechanisms employed by invertebrates are not. Pharmacological and molecular approaches were used to investigate Na+ uptake mechanisms and their link to ammonia excretion in the ribbon leech Nephelopsis obscura. At the molecular level, we identified a Na+ channel and a Na+/H+ exchanger (NHE) in the skin of N. obscura, where the NHE was up-regulated when acclimated to extremely low [Na+] (0.05 mmol l−1, pH 5) conditions. Additionally, we found that leeches in dilute freshwater environments use both a vacuolar-type H+-ATPase (VHA)-assisted uptake via a Na+ channel and a NHE-based mechanisms for Na+ uptake. Immunolocalization of VHA and Na+/K+-ATPase (NKA) indicated at least two cell types present within leech skin, VHA+ and VHA− cells, where the VHA+ cells are probably involved in Na+ uptake. NKA was present throughout the epithelium. We also found that increasing ammonia excretion by decreasing water pH, ammonia loading leeches or exposing leeches to high environmental ammonia does not affect Na+ uptake, providing indications that an NHE-Rh metabolon is not present and that ammonia excretion and Na+ uptake are not coupled in N. obscura. To our knowledge, this is the first study showing the mechanisms of Na+ uptake and their links to ammonia excretion in a freshwater invertebrate, where results suggest an ammonia-independent Na+ uptake mechanism relying on both Na+ channels and NHEs. Summary: Novel mechanisms for Na+ uptake in the skin of the freshwater leech Nephelopsis obscura were identified to employ both Na+/H+ exchangers and Na+ channels, while also being independent of ammonia transport.
Journal of Fish Diseases | 2014
Aaron G. Schultz; Paul L. Jones; Tes Toop
We have previously identified an unknown cell type in the gills of Murray cod affected with chronic ulcerative dermatopathy (CUD), a condition that causes severe erosion of epidermis surrounding cephalic and lateral line sensory canals. The condition arises in aquaculture facilities that utilize groundwater, with the cause of the condition suggested to be an unknown contaminant(s). Light and transmission electron microscopy were used to characterize and quantify the unknown cells in CUD-affected Murray cod. The cells were identified as rodlet cells and were characterized by their oval or round shape, basally located nucleus, thick fibrillar capsule surrounding the cell, and multiple rodlet sacs containing a central electron-dense core within the cell. Rodlet cells were present in the gills, kidney and intestine of non-CUD-affected and CUD-affected Murray cod; however, differences in the numbers were observed between the groups of fish. A significantly greater number of rodlet cells were observed in the gills and collecting ducts of CUD-affected fish. This is the first report of rodlet cells in Murray cod, and we suggest that the increased rodlet cell numbers in CUD-affected Murray cod may be in response to unknown water contaminant(s) present in the groundwater that give rise to CUD.
American Journal of Physiology-cell Physiology | 2014
Agnieszka K. Dymowska; Aaron G. Schultz; Salvatore D. Blair; Danuta Chamot; Greg G. Goss
Neurochemical Research | 2016
Arundhati Joshi; Wiebke Rastedt; Kathrin Faber; Aaron G. Schultz; Felix Bulcke; Ralf Dringen