Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Goodman is active.

Publication


Featured researches published by Aaron Goodman.


Molecular Cancer Therapeutics | 2017

Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers

Aaron Goodman; Shumei Kato; Lyudmila Bazhenova; Sandip Pravin Patel; Garrett Michael Frampton; Vincent A. Miller; Philip J. Stephens; Gregory A. Daniels; Razelle Kurzrock

Immunotherapy induces durable responses in a subset of patients with cancer. High tumor mutational burden (TMB) may be a response biomarker for PD-1/PD-L1 blockade in tumors such as melanoma and non–small cell lung cancer (NSCLC). Our aim was to examine the relationship between TMB and outcome in diverse cancers treated with various immunotherapies. We reviewed data on 1,638 patients who had undergone comprehensive genomic profiling and had TMB assessment. Immunotherapy-treated patients (N = 151) were analyzed for response rate (RR), progression-free survival (PFS), and overall survival (OS). Higher TMB was independently associated with better outcome parameters (multivariable analysis). The RR for patients with high (≥20 mutations/mb) versus low to intermediate TMB was 22/38 (58%) versus 23/113 (20%; P = 0.0001); median PFS, 12.8 months vs. 3.3 months (P ≤ 0.0001); median OS, not reached versus 16.3 months (P = 0.0036). Results were similar when anti-PD-1/PD-L1 monotherapy was analyzed (N = 102 patients), with a linear correlation between higher TMB and favorable outcome parameters; the median TMB for responders versus nonresponders treated with anti-PD-1/PD-L1 monotherapy was 18.0 versus 5.0 mutations/mb (P < 0.0001). Interestingly, anti-CTLA4/anti-PD-1/PD-L1 combinations versus anti-PD-1/PD-L1 monotherapy was selected as a factor independent of TMB for predicting better RR (77% vs. 21%; P = 0.004) and PFS (P = 0.024). Higher TMB predicts favorable outcome to PD-1/PD-L1 blockade across diverse tumors. Benefit from dual checkpoint blockade did not show a similarly strong dependence on TMB. Mol Cancer Ther; 16(11); 2598–608. ©2017 AACR.


Clinical Cancer Research | 2017

Hyperprogressors after immunotherapy: Analysis of genomic alterations associated with accelerated growth rate

Shumei Kato; Aaron Goodman; Vighnesh Walavalkar; Donald A. Barkauskas; Andrew Sharabi; Razelle Kurzrock

Purpose: Checkpoint inhibitors demonstrate salutary anticancer effects, including long-term remissions. PD-L1 expression/amplification, high mutational burden, and mismatch repair deficiency correlate with response. We have, however, observed a subset of patients who appear to be “hyperprogressors,” with a greatly accelerated rate of tumor growth and clinical deterioration compared with pretherapy, which was also recently reported by Institut Gustave Roussy. The current study investigated potential genomic markers associated with “hyperprogression” after immunotherapy. Experimental Design: Consecutive stage IV cancer patients who received immunotherapies (CTLA-4, PD-1/PD-L1 inhibitors or other [investigational] agents) and had their tumor evaluated by next-generation sequencing were analyzed (N = 155). We defined hyperprogression as time-to-treatment failure (TTF) <2 months, >50% increase in tumor burden compared with preimmunotherapy imaging, and >2-fold increase in progression pace. Results: Amongst 155 patients, TTF <2 months was seen in all six individuals with MDM2/MDM4 amplification. After anti-PD1/PDL1 monotherapy, four of these patients showed remarkable increases in existing tumor size (55% to 258%), new large masses, and significantly accelerated progression pace (2.3-, 7.1-, 7.2- and 42.3-fold compared with the 2 months before immunotherapy). In multivariate analysis, MDM2/MDM4 and EGFR alterations correlated with TTF <2 months. Two of 10 patients with EGFR alterations were also hyperprogressors (53.6% and 125% increase in tumor size; 35.7- and 41.7-fold increase). Conclusions: Some patients with MDM2 family amplification or EGFR aberrations had poor clinical outcome and significantly increased rate of tumor growth after single-agent checkpoint (PD-1/PD-L1) inhibitors. Genomic profiles may help to identify patients at risk for hyperprogression on immunotherapy. Further investigation is urgently needed. Clin Cancer Res; 23(15); 4242–50. ©2017 AACR.


Nature Reviews Clinical Oncology | 2017

PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas

Aaron Goodman; Sandip Pravin Patel; Razelle Kurzrock

Cancer cells can escape T-cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) immune checkpoint. Indeed, therapeutic antibodies that block the PD-1–PD-L1 axis induce durable clinical responses against a growing list of solid tumours. B-cell lymphomas also leverage this checkpoint to escape immune recognition, although the outcomes of PD-1–PD-L1 blockade, and the correlations between PD-L1 expression and treatment responses, are less-well elucidated in these diseases than in solid cancers. Nevertheless, in patients with Hodgkin lymphoma, amplification of the gene encoding PD-L1 is commonly associated with increased expression of this protein on Reed–Sternberg cells. Correspondingly, PD-1 blockade with nivolumab has been demonstrated to result in response rates as high as 87% in unselected patients with relapsed and/or refractory Hodgkin lymphoma, leading to the FDA approval of nivolumab for this indication in May 2016. The PD-1/PD-L1 axis is probably also important for immune evasion of B-cell lymphomas with a viral aetiology, including those associated with human immunodeficiency virus (HIV) and Epstein–Barr virus (EBV). This Review is focused on the role of PD-1–PD-L1 blockade in unleashing host antitumour immune responses against various B-cell lymphomas, and summarizes the clinical studies of this approach performed to date.


Clinical Cancer Research | 2017

Hypermutated Circulating Tumor DNA: Correlation with Response to Checkpoint Inhibitor–Based Immunotherapy

Yulian Khagi; Aaron Goodman; Gregory A. Daniels; Sandip Pravin Patel; Assuntina G. Sacco; James M. Randall; Lyudmila Bazhenova; Razelle Kurzrock

Purpose: Tumor mutational burden detected by tissue next-generation sequencing (NGS) correlates with checkpoint inhibitor response. However, tissue biopsy may be costly and invasive. We sought to investigate the association between hypermutated blood-derived circulating tumor DNA (ctDNA) and checkpoint inhibitor response. Experimental Design: We assessed 69 patients with diverse malignancies who received checkpoint inhibitor–based immunotherapy and blood-derived ctDNA NGS testing (54–70 genes). Rates of stable disease (SD) ≥6 months, partial and complete response (PR, CR), progression-free survival (PFS), and overall survival (OS) were assessed based on total and VUS alterations. Results: Statistically significant improvement in PFS was associated with high versus low alteration number in variants of unknown significance (VUS, >3 alterations versus VUS ≤3 alterations), SD ≥6 months/PR/CR 45% versus 15%, respectively; P = 0.014. Similar results were seen with high versus low total alteration number (characterized plus VUS, ≥6 vs. <6). Statistically significant OS improvement was also associated with high VUS alteration status. Two-month landmark analysis showed that responders versus nonresponders with VUS >3 had a median PFS of 23 versus 2.3 months (P = 0.0004). Conclusions: Given the association of alteration number on liquid biopsy and checkpoint inhibitor–based immunotherapy outcomes, further investigation of hypermutated ctDNA as a predictive biomarker is warranted. Clin Cancer Res; 23(19); 5729–36. ©2017 AACR.


npj Genomic Medicine | 2016

Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy

Sadakatsu Ikeda; Aaron Goodman; Philip R. Cohen; Taylor J Jensen; Christopher K. Ellison; Garrett Michael Frampton; Vincent A. Miller; Sandip Pravin Patel; Razelle Kurzrock

Metastatic basal cell carcinomas are rare malignancies harbouring Hedgehog pathway alterations targetable by SMO antagonists (vismodegib/sonidegib). We describe, for the first time, the molecular genetics and response of a patient with Hedgehog inhibitor-resistant metastatic basal cell carcinoma who achieved rapid tumour regression (ongoing near complete remission at 4 months) with nivolumab (anti-PD1 antibody). He had multiple hallmarks of anti-PD1 responsiveness including high mutational burden (>50 mutations per megabase; 19 functional alterations in tissue next-generation sequencing (NGS; 315 genes)) as well as PDL1/PDL2/JAK2 amplification (as determined by both tissue NGS and by analysis of plasma-derived cell-free DNA). The latter was performed using technology originally developed for the genome-wide detection of sub-chromosomal copy-number alterations (CNAs) in noninvasive prenatal testing and showed numerous CNAs including amplification of the 9p24.3-9p22.2 region containing PD-L1, PD-L2 and JAK2. Of interest, PD-L1, PD-L2 and JAK2 amplification is a characteristic of Hodgkin lymphoma, which is exquisitely sensitive to nivolumab. In conclusion, selected SMO antagonist-resistant metastatic basal cell carcinomas may respond to nivolumab based on underlying molecular genetic mechanisms that include PD-L1 amplification and high tumour mutational burden.


Journal of Clinical Oncology | 2017

Next-Generation Sequencing Reveals Potentially Actionable Alterations in the Majority of Patients With Lymphoid Malignancies

Aaron Goodman; Michael Y. Choi; Matthew J. Wieduwilt; Carolyn Mulroney; Caitlin Costello; Garrett Michael Frampton; Vincent A. Miller; Razelle Kurzrock

Next generation sequencing (NGS) identifies alterations that may be potentially targetable by Food and Drug Administration (FDA) approved drugs and/or by available experimental agents that may not have otherwise been contemplated. Many targeted drugs have been developed for diverse solid cancers; a smaller number of genomically targeted drugs have been approved for lymphoid malignancies. We analyzed NGS results from 60 patients with various lymphoid malignancies and found a total of 224 alterations (median per patient = 3). Forty-nine patients (82%) had potentially actionable alterations using FDA-approved drugs and/or experimental therapies; only 11 patients (18%) had no theoretically actionable alterations. Only three patients (5%) had an alteration for which an approved drug in the disease is available (on-label); 45 patients (75%) had an alteration for which an approved drug is available in another disease (off-label). The median number of alterations per patient potentially actionable by an FDA-approved drug was 1. Interestingly, 19 of 60 patients (32%) had intermediate to high tumor mutational burden, which may predict response to certain immunotherapy agents. In conclusion, NGS identifies alterations that may be pharmacologically tractable in most patients with lymphoid malignancies, albeit with drugs that have usually been developed in the context of solid tumors. These observations merit expanded exploration in the clinical trials setting.


JAMA Oncology | 2018

Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors

Aaron Goodman; David Piccioni; Shumei Kato; Amélie Boichard; Huan-You Wang; Garrett Michael Frampton; Scott M. Lippman; Caitlin F. Connelly; David Fabrizio; Vincent A. Miller; Jason K. Sicklick; Razelle Kurzrock

Importance Copy number alterations in programmed cell death ligand 1 (PDL1 or CD274), programmed cell death 1 ligand 2 (PDCD1LG2 or PDL2), and Janus kinase 2 (JAK2) genes (chromosome 9p24.1) characterize Hodgkin lymphoma, resulting in high response rates to programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) blockade. The prevalence and utility of PDL1 amplification as a response biomarker to PD-1/PD-L1 blockade are unknown in other tumors. Objectives To examine the prevalence of PDL1 amplification and its utility as a response biomarker to PD-1/PD-L1 blockade in solid tumors. Design, Setting, and Participants This retrospective study (October 1, 2012, to October 1, 2017) used a deidentified tumor database from a commercial company and annotated clinical records from a subset of patients treated at a university tertiary referral center. The study analyzed 118 187 tumors from the deidentified database, including a clinically annotated subgroup of 2039 malignant tumors. Interventions Comprehensive genomic profiling was performed on all samples to determine PDL1 amplification, microsatellite instability, and tumor mutational burden (TMB). A subset of patients was treated with PD-1/PD-L1 blockade. Main Outcomes and Measures The prevalence of PDL1 amplification was determined among 118 187 patient samples that underwent next-generation sequencing. Solid tumors treated with checkpoint blockade were evaluated for response and progression-free survival (PFS). Results Of the 118 187 deidentified tumor samples, PDL1 amplifications were identified in 843 (0.7%), including more than 100 types of solid tumors. Most PDL1-amplified tumors (84.8%) had a low to intermediate TMB. PDL1 amplification did not always correlate with high-positive PD-L1 expression by immunohistochemical analysis. Six of 9 patients (66.7%) from 1 center with PDL1-amplified solid tumors had objective responses after checkpoint blockade administration. The median PFS among all treated patients was 15.2 months. Responders included 1 patient with glioblastoma (PFS, ≥5.2 months), 2 patients with head and neck squamous cell cancer (PFS, ≥9 and 15.2 months), 2 patients with metastatic basal cell cancer (PFS, 3.8 and ≥24.1 months), and 1 patient with urothelial cancer (PFS, ≥17.8 months). Conclusions and Relevance The results of this study suggest that PDL1 amplification occurs in a small subset of malignant tumors. Additional large-scale, prospective studies of PDL1-amplified cancers are warranted to confirm the responses to checkpoint blockade described herein, even in the absence of microsatellite instability, high PD-L1 expression, and a high TMB.


International Journal of Molecular Sciences | 2017

Appearance of New Cutaneous Superficial Basal Cell Carcinomas during Successful Nivolumab Treatment of Refractory Metastatic Disease: Implications for Immunotherapy in Early Versus Late Disease

Philip R. Cohen; Shumei Kato; Aaron Goodman; Sadakatsu Ikeda; Razelle Kurzrock

Metastatic basal cell carcinoma may be treated with hedgehog pathway inhibitors, including vismodegib and sonidegib. However, patients can demonstrate resistance to these agents. We describe a man with metastatic basal cell carcinoma who did not respond well to vismodegib and sonidegib. Next generation sequencing of his metastatic liver tumor demonstrated a high tumor mutational burden (103 mutations per megabase) and the genomic amplification of PD-L1, both of which are features that predict response to anti-PD1/PD-L1 immunotherapy. Treatment with nivolumab, an anti-PD1 checkpoint inhibitor, resulted in near complete remission. Yet, he developed new primary cutaneous basal cell carcinomas while receiving immunotherapy and while his metastatic disease showed an ongoing response. His new superficial skin cancer had a lower tumor mutational burden (45 mutations per megabase) than the metastatic disease. Since immunotherapy response rates are higher in patients with more genomically complex tumors, our observations suggest that, in contrast with the premise of earlier treatment is better, which holds true for targeted and cytotoxic therapies, immunotherapy may be better suited to more advanced disease.


Cancer | 2018

GNAS, GNAQ, and GNA11 Alterations in Patients With Diverse Cancers: GNA Alterations in Diverse Cancers

Austin J. Parish; Vi Nguyen; Aaron Goodman; Karthikeyan Murugesan; Garrett Michael Frampton; Razelle Kurzrock

Advances in deep sequencing technology have uncovered a widespread, protumorigenic role of guanine nucleotide‐binding (G protein) α (GNA) subunits, particularly GNA subunits Gs (GNAS), Gq (GNAQ), and G11 (GNA11) (GNA*), in a diverse collection of malignancies. The objectives of the current study were: 1) to determine GNA* aberration status in a cohort of 1348 patients with cancer and 2) to examine tumor mutational burden, overall survival rates, and treatment outcomes in patients with GNA*‐positive tumors versus those with tumors that had wild‐type GNA*.


Blood | 2018

International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease

Frits van Rhee; Peter M. Voorhees; Angela Dispenzieri; Alexander Fosså; Gordan Srkalovic; Makoto Ide; Nikhil C. Munshi; Stephen Schey; Matthew Streetly; Sheila K. Pierson; Helen Partridge; Sudipto Mukherjee; Dustin Shilling; Katie L. Stone; Amy D Greenway; Jason Ruth; Mary Jo Lechowicz; Shanmuganathan Chandrakasan; Raj Jayanthan; Elaine S. Jaffe; Heather A. Leitch; Naveen Pemmaraju; Amy Chadburn; Megan S. Lim; Kojo S.J. Elenitoba-Johnson; Vera P. Krymskaya; Aaron Goodman; Christian Hoffmann; Pier Luigi Zinzani; Simone Ferrero

Castleman disease (CD) describes a group of heterogeneous hematologic disorders with characteristic histopathological features. CD can present with unicentric or multicentric (MCD) regions of lymph node enlargement. Some cases of MCD are caused by human herpesvirus-8 (HHV-8), whereas others are HHV-8-negative/idiopathic (iMCD). Treatment of iMCD is challenging, and outcomes can be poor because no uniform treatment guidelines exist, few systematic studies have been conducted, and no agreed upon response criteria have been described. The purpose of this paper is to establish consensus, evidence-based treatment guidelines based on the severity of iMCD to improve outcomes. An international Working Group of 42 experts from 10 countries was convened by the Castleman Disease Collaborative Network to establish consensus guidelines for the management of iMCD based on published literature, review of treatment effectiveness for 344 cases, and expert opinion. The anti-interleukin-6 monoclonal antibody siltuximab (or tocilizumab, if siltuximab is not available) with or without corticosteroids is the preferred first-line therapy for iMCD. In the most severe cases, adjuvant combination chemotherapy is recommended. Additional agents are recommended, tailored by disease severity, as second- and third-line therapies for treatment failures. Response criteria were formulated to facilitate the evaluation of treatment failure or success. These guidelines should help treating physicians to stratify patients based on disease severity in order to select the best available therapeutic option. An international registry for patients with CD (ACCELERATE, #NCT02817997) was established in October 2016 to collect patient outcomes to increase the evidence base for selection of therapies in the future.

Collaboration


Dive into the Aaron Goodman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shumei Kato

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Tran

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge