Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron J. Romanowsky is active.

Publication


Featured researches published by Aaron J. Romanowsky.


Science | 2011

An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy

Andrew J. Levan; Nial R. Tanvir; S. B. Cenko; Daniel A. Perley; K. Wiersema; J. S. Bloom; Andrew S. Fruchter; A. de Ugarte Postigo; P. T. O’Brien; N. Butler; A. J. van der Horst; G. Leloudas; Adam N. Morgan; Kuntal Misra; Geoffrey C. Bower; J. Farihi; R. L. Tunnicliffe; Maryam Modjaz; Jeffrey M. Silverman; J. Hjorth; C. C. Thöne; A. Cucchiara; J. M. Castro Cerón; A. J. Castro-Tirado; J. A. Arnold; M. Bremer; Jean P. Brodie; Thomas L. Carroll; Michael C. Cooper; P. A. Curran

A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray–selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.


The Astrophysical Journal | 2011

GALAXIES IN ΛCDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY-VELOCITY RELATION, BARYONIC MASS-VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING

Sebastian Trujillo-Gomez; Anatoly Klypin; Joel Primack; Aaron J. Romanowsky

It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, 1 fits—at least on average—all basic statistics of galaxies with circular velocities Vcirc > 80 km s − calculated at a radius of ∼10 kpc. Our primary observational constraint is the luminosity–velocity (LV) relation—which generalizes the Tully–Fisher and Faber–Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ∼50 km s −1 to ∼500 km s −1 , with a bend below ∼80 km s −1 and a systematic offset between lateand early-type galaxies. For comparison to theory, we employ our new ΛCDM “Bolshoi” simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from Mr =− 14 to Mr =− 22. We also compare our predictions for the “cold” baryon mass (i.e., stars and cold gas) of galaxies as a function of circular velocity with the available observations, again finding a very good agreement. The predicted circular velocity function (VF) is also in agreement with the galaxy VF from 80 to 400 km s −1 ,u sing the HIPASS survey for late-type galaxies and Sloan Digital Sky Survey (SDSS) for early-type galaxies. However, in accord with other recent results, we find that the DM halos with Vcirc < 80 km s −1 are much more abundant than observed galaxies with the same Vcirc. Finally, we find that the two-point correlation function of bright galaxies in our model matches very well the results from the final data release of the SDSS, especially when a small amount of scatter is included in the HAM prescription.


Monthly Notices of the Royal Astronomical Society | 2009

Kinematic properties of early-type galaxy haloes using planetary nebulae★

L. Coccato; Ortwin Gerhard; Magda Arnaboldi; Payel Das; N. G. Douglas; K. Kuijken; Michael R. Merrifield; N. R. Napolitano; E. Noordermeer; Aaron J. Romanowsky; M. Capaccioli; A. Cortesi; F. De Lorenzi; Kenneth C. Freeman

We present new planetary nebulae (PNe) positions, radial velocities and magnitudes for six early-type galaxies obtained with the Planetary Nebulae Spectrograph (PNS), along with derived two-dimensional velocity and velocity dispersion fields, and the α parameters (i.e. the number of PNe per unit luminosity). We also present new deep absorption-line long-slit kinematics for three galaxies in the sample, obtained with the FOcal Reducer and low dispersion Spectrograph (FORS2) at the Very Large Telescope (VLT). We extend this study to include additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, including previous PNS studies, in order to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar absorption-line kinematics to typically several and up to 8 effective radii. The combination of photometry, absorption-line and PNe kinematics shows (i) a good agreement between the PNe number density distribution and the stellar surface brightness in the region where the two data sets overlap; (ii) a good agreement between PNe and absorption-line kinematics; (iii) that the mean rms velocity profiles fall into two groups, with part of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; (iv) a larger variety of velocity dispersion radial profiles; (v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotator galaxies; (vi) that outer haloes are characterized by more complex radial profiles of the specific angular momentum-related λ_R parameter than observed within 1 R_e; (vii) that many objects are more rotationally dominated at large radii than in their central parts and (viii) that the halo kinematics are correlated with other galaxy properties, such as total B band and X-ray luminosity, isophotal shape, total stellar mass, V/σ and α parameter, with a clear separation between fast and slow rotators. Based in part on observations made with the William Herschel Telescope operated by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos on the island of La Palma, of the Instituto de Astrofisica de Canarias, and on observations collected at the European Southern Observatory, Chile, Program: 76.B-0788(A). E-mail: [email protected]


Astronomy and Astrophysics | 2010

The globular cluster system of NGC 1399 *,**,*** V. dynamics of the cluster system out to 80 kpc

Ylva Schuberth; Tom Richtler; Michael Hilker; Boris Dirsch; Lilia P. Bassino; Aaron J. Romanowsky; L. Infante

Globular clusters (GCs) are tracers of the gravitational potential of their host galaxies. Moreover, their kinematic properties may provide clues for understanding the formation of GC systems and their host galaxies. We use the largest set of GC velocities obtained so far of any elliptical galaxy to revise and extend the previous investigations (Richtler et al. 2004) of the dynamics of NGC 1399, the central dominant galaxy of the nearby Fornax cluster of galaxies. The GC velocities are used to study the kinematics, their relation with population properties, and the dark matter halo of NGC 1399. We have obtained 477 new medium-resolution spectra (of these, 292 are spectra from 265 individual GCs, 241 of which are not in the previous data set). with the VLT FORS 2 and Gemini South GMOS multi-object spectrographs. We revise velocities for the old spectra and measure velocities for the new spectra, using the same templates to obtain an homogeneously treated data set. Our entire sample now comprises velocities for almost 700 GCs with projected galactocentric radii between 6 and 100 kpc. In addition, we use velocities of GCs at larger distances published elsewhere. Combining the kinematic data with wide-field photometric Washington data, we study the kinematics of the metal-poor and metal-rich subpopulations. We discuss in detail the velocity dispersions of subsamples and perform spherical Jeans modelling. The most important results are: the red GCs resemble the stellar field population of NGC 1399 in the region of overlap. The blue GCs behave kinematically more erratic. Both subpopulations are kinematically distinct and do not show a smooth transition. It is not possible to find a common dark halo which reproduces simultaneously the properties of both red and blue GCs. Some velocities of blue GCs are only to be explained by orbits with very large apogalactic distances, thus indicating a contamination with GCs which belong to the entire Fornax cluster rather than to NGC 1399. Also, stripped GCs from nearby elliptical galaxies, particularly NGC 1404, may contaminate the blue sample. We argue in favour of a scenario in which the majority of the blue cluster population has been accreted during the assembly of the Fornax cluster. The red cluster population shares the dynamical history of the galaxy itself. Therefore we recommend to use a dark halo based on the red GCs alone. The dark halo which fits best is marginally less massive than the halo quoted previously. The comparison with X-ray analyses is satisfactory in the inner regions, but without showing evidence for a transition from a galaxy to a cluster halo, as suggested by X-ray work.


The Astronomical Journal | 2011

THE RELATIONSHIPS AMONG COMPACT STELLAR SYSTEMS: A FRESH VIEW OF ULTRACOMPACT DWARFS

Jean P. Brodie; Aaron J. Romanowsky; Jay Strader; Duncan A. Forbes

We use a combined imaging and spectroscopic survey of the nearby central cluster galaxy, M87, to assemble a sample of 34 confirmed ultracompact dwarfs (UCDs) with half-light radii of 210 pc measured from Hubble Space Telescope images. This doubles the existing sample in M87, making it the largest such sample for any galaxy, while extending the detection of UCDs to unprecedentedly low luminosities (MV =− 9). With this expanded sample, we find no correlation between size and luminosity, in contrast to previous suggestions, and no general correlation between size and galactocentric distance. We explore the relationships between UCDs, less luminous extended clusters (including faint fuzzies), globular clusters (GCs), as well as early-type galaxies and their nuclei, assembling an extensive new catalog of sizes and luminosities for stellar systems. Most of the M87 UCDs follow a tight color–magnitude relation, offset from the metal-poor GCs. This, along with kinematical differences, demonstrates that most UCDs are a distinct population from normal GCs, and not simply a continuation to larger sizes and higher luminosities. The UCD color–magnitude trend couples closely with that for Virgo dwarf elliptical nuclei. We conclude that the M87 UCDs are predominantly stripped nuclei. The brightest and reddest UCDs may be the remnant nuclei of more massive galaxies while a subset of the faintest UCDs may be tidally limited and related to more compact star clusters. In the broader context of galaxy assembly, blue UCDs may trace halo build-up by accretion of low-mass satellites, while red UCDs may be markers of metal-rich bulge formation in larger galaxies.


Monthly Notices of the Royal Astronomical Society | 2009

Central mass-to-light ratios and dark matter fractions in early-type galaxies

C. Tortora; N. R. Napolitano; Aaron J. Romanowsky; M. Capaccioli; G. Covone

Dynamical studies of local elliptical galaxies and the Fundamental Plane point to a strong dependence of the total mass-to-light ratio (M/L) on luminosity with a relation of the form M/L ∝ L γ . The ‘tilt’ γ may be caused by various factors, including stellar population properties (metallicity, age and star formation history), initial mass function, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform data set of local early-type galaxies from Prugniel & Simien. We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M/L contributes little to the tilt. We estimate the total M/L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than M B ∼− 20.5, and increasing with luminosity for the brighter galaxies; we detect no significant differences between S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamical studies at larger radii.


Monthly Notices of the Royal Astronomical Society | 2013

The SLUGGS Survey : kinematics for over 2500 globular clusters in 12 early-type galaxies

Vincenzo Pota; Duncan A. Forbes; Aaron J. Romanowsky; Jean P. Brodie; Lee R. Spitler; Jay Strader; Caroline Foster; Jacob A. Arnold; Andrew J. Benson; Christina Blom; Jonathan R. Hargis; Katherine L. Rhode; Christopher Usher

We present a spectro-photometric survey of 2522 extragalactic globular clusters (GCs) around twelve early-type galaxies, nine of which have not been published previously. Combining space‐based and multi‐colour wide field ground‐based imagi ng, with spectra from the Keck DEIMOS instrument, we obtain an average of 160 GC radial velocities per galaxy, with a high velocity precision of � 15 km s 1 per GC. After studying the photometric properties of the GC systems, such as their spatial and colour distribut ions, we focus on the kinematics of metal-poor (blue) and metal-rich (red) GC subpopulations to an average distance of � 8 effective radii from the galaxy centre. Our results show that for some systems the bimodality in GC colour is also present in GC kinematics. The kinematics of the red GC subpopulations are strongly coupled with the host galaxy stellar kinematics. The blue GC subpopulations are more dominated by random motions, especially in the outer regions, and decoupled fro m the red GCs. Peculiar GC kinematic profiles are seen in some galaxies: the blue GCs in NGC 821 rotate along the galaxy minor axis, whereas the GC system of the lenticular galaxy NGC 7457 appears to be strongly rotation supported in the outer region. We supplement our galaxy sample with data from the literature and carry out a number of tests to study the kinematic differences between the two GC subpopulations. We confirm that the GC kinematics are coupled with the host galaxy properties and find that the velocity kurtosis and the slope of their velocity dispersion profiles is different between the two GC subpopulations in more massive galaxies.


Monthly Notices of the Royal Astronomical Society | 2009

The Planetary Nebula Spectrograph elliptical galaxy survey: the dark matter in NGC 4494

N. R. Napolitano; Aaron J. Romanowsky; L. Coccato; M. Capaccioli; N. G. Douglas; E. Noordermeer; Ortwin Gerhard; Magda Arnaboldi; F. De Lorenzi; K. Kuijken; Michael R. Merrifield; Ewan O'Sullivan; A. Cortesi; Payel Das; Kenneth C. Freeman

We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1Re. The velocity dispersion profile declines with radius, though not very steeply, down to ∼70 km s − 1 at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component A cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.


The Astrophysical Journal | 2014

The SAGES Legacy Unifying Globulars and GalaxieS Survey (SLUGGS): Sample definition, methods, and initial results

Jean P. Brodie; Aaron J. Romanowsky; Jay Strader; Duncan A. Forbes; Caroline Foster; Zachary G. Jennings; Nicola Pastorello; Vincenzo Pota; Christopher Usher; Christina Blom; Justin Kader; Joel C. Roediger; Lee R. Spitler; Alexa Villaume; Jacob A. Arnold; Sreeja S. Kartha; Kristin A. Woodley

We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin2 field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ~8 R e, and to ~15 R e in some cases. New techniques to extract integrated stellar kinematics and metallicities to large radii (~2-3 R e) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.


Monthly Notices of the Royal Astronomical Society | 2006

A deep kinematic survey of planetary nebulae in the Andromeda galaxy using the Planetary Nebula Spectrograph

H. R. Merrett; Michael R. Merrifield; N. G. Douglas; Konrad Kuijken; Aaron J. Romanowsky; N. R. Napolitano; Magda Arnaboldi; M. Capaccioli; Kenneth C. Freeman; Ortwin Gerhard; L. Coccato; D. Carter; N. W. Evans; M. I. Wilkinson; C. Halliday; Terry J. Bridges

This thesis presents a survey of compact emission-line objects in the Andromeda Galaxy (M31), performed using a novel new instrument, the Planetary Nebula Spectrograph. The final catalogue contains the positions, magnitudes and velocities for 3300 objects displaying [O III] emission at 5007 Angstroms, of which 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers some 6 square degrees, taking in the whole of M31s disk out to a projected radius of 1.5 degrees, with extensions along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m(5007) ~ 23.75, 3.5 magnitudes into the planetary nebula luminosity function. A number of satellite and background galaxies are located within the M31 survey area and emission line objects associated with these have been identified. Analyses of the basic kinematic properties associated with each of these galaxies are presented. The PN catalogue has been analysed for non-kinematic, kinematic and dynamical properties. We have examined the planetary nebula luminosity function across M31, the spatial distribution of PNe, and the luminosity specific PN density. These analyses indicate that apart from a small change in the luminosity specific PN density there are no other non-kinematic differences between the bulge and disk PN populations suggesting that the sample of PNe is not strongly populated by objects whose progenitors are more massive stars. There is no indication of a significant halo PN population. Rotation curves for both the surveyed PNe and H II regions have been produced as well as the PN velocity dispersion profile. The H II rotation curve is seen to be in good agreement with those in the literature, while the PN rotation curve and velocity dispersion profile exhibit some peculiarities. However, under the approximation of an axisymmetric disk these are shown to be mutually consistent, but require the disk to flare with radius if the shape of its velocity ellipsoid remains invariant. The kinematic properties of photometric substructures are examined and kinematic substructures are searched for. A possible kinematic extension of the Southern Stream has been discovered. A new approach is taken in order to search for dynamical streams in the disk of the galaxy, involving an examination of the energy angular momentum plane. This also provides a new way of looking at the distribution function of a tracer population in a disk galaxy.

Collaboration


Dive into the Aaron J. Romanowsky's collaboration.

Top Co-Authors

Avatar

Jean P. Brodie

University of California

View shared research outputs
Top Co-Authors

Avatar

Duncan A. Forbes

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jay Strader

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Foster

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Lee R. Spitler

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

M. Capaccioli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Pota

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge