Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron M. LeBeau is active.

Publication


Featured researches published by Aaron M. LeBeau.


Molecular Cancer Therapeutics | 2009

Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin.

Aaron M. LeBeau; W. Nathaniel Brennen; Saurabh Aggarwal; Samuel R. Denmeade

Fibroblast-Activation Protein-α (FAP) is a membrane-bound serine protease that is expressed on the surface of reactive stromal fibroblasts present within the majority of human epithelial tumors but is not expressed by normal tissues. FAP is a postprolyl peptidase that differs from other dipeptidyl prolyl peptidases such as diprolylpeptidase 4 in that it also has gelatinase and collagenase endopeptidase activity. Therefore, FAP represents a potential pan-tumor target whose enzymatic activity can be exploited for the intratumoral activation of prodrugs and protoxins. To evaluate FAP as a tumor-specific target, putative FAP-selective peptide protoxins were constructed through modification of the prodomain of melittin, a 26 amino acid amphipathic cytolytic peptide that is the main toxic component in the venom of the common European honeybee Apis milefera. Melittin is synthesized as promelittin, containing a 22 amino acid NH2-terminal prodomain rich in the amino acids proline and alanine. In this study, peptides containing truncated melittin prodomain sequences were tested on erythrocytes to determine the optimal prodomain length for inhibiting cytolytic activity. Once optimized, modified promelittin peptides were generated in which previously identified FAP substrate sequences were introduced into the prodomain. Peptide protoxins were identified that were efficiently activated by FAP and selectively toxic to FAP-expressing cell lines with an IC50 value in the low micromolar range that is similar to melittin. Intratumoral injection of an FAP-activated protoxin produced significant lysis and growth inhibition of human breast and prostate cancer xenografts with minimal toxicity to the host animal. [Mol Cancer Ther 2009;8(5):1378–86]


Chemistry & Biology | 2008

Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

Aaron M. LeBeau; Pratap Singh; John T. Isaacs; Samuel R. Denmeade

Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a K(i) for PSA of 65 nM. The inhibitor had a 60-fold higher K(i) for chymotrypsin. A validated model of PSAs catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme.


Cancer Research | 2013

Targeting uPAR with Antagonistic Recombinant Human Antibodies in Aggressive Breast Cancer

Aaron M. LeBeau; Sai Duriseti; Stephanie T. Murphy; Francois Pepin; Byron Hann; Joe W. Gray; Henry F. VanBrocklin; Charles S. Craik

Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.


Journal of Biological Chemistry | 2010

Antagonistic Anti-urokinase Plasminogen Activator Receptor (uPAR) Antibodies Significantly Inhibit uPAR-mediated Cellular Signaling and Migration

Sai Duriseti; David H. Goetz; Daniel R. Hostetter; Aaron M. LeBeau; Ying Wei; Charles S. Craik

Interactions between urokinase plasminogen activator receptor (uPAR) and its various ligands regulate tumor growth, invasion, and metastasis. Antibodies that bind specific uPAR epitopes may disrupt these interactions, thereby inhibiting these processes. Using a highly diverse and naïve human fragment of the antigen binding (Fab) phage display library, we identified 12 unique human Fabs that bind uPAR. Two of these antibodies compete against urokinase plasminogen activator (uPA) for uPAR binding, whereas a third competes with β1 integrins for uPAR binding. These competitive antibodies inhibit uPAR-dependent cell signaling and invasion in the non-small cell lung cancer cell line, H1299. Additionally, the integrin-blocking antibody abrogates uPAR/β1 integrin-mediated H1299 cell adhesion to fibronectin and vitronectin. This antibody and one of the uPAR/uPA antagonist antibodies shows a significant combined effect in inhibiting cell invasion through Matrigel/Collagen I or Collagen I matrices. Our results indicate that these antagonistic antibodies have potential for the detection and treatment of uPAR-expressing tumors.


Journal of Biological Chemistry | 2005

Cellular Stability of Serotonin N-Acetyltransferase Conferred by Phosphonodifluoromethylene Alanine (Pfa) Substitution for Ser-205

Weiping Zheng; Dirk Schwarzer; Aaron M. LeBeau; Joan L. Weller; David C. Klein; Philip A. Cole

Large changes in the activity of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) in the pineal gland control the rhythmic production of the time-keeping hormone melatonin. The activity of AANAT reflects changes in the amount and activation state of the AANAT protein, both of which increase at night. The molecular basis of this regulation is now becoming known, and recent data indicate that this involves phosphorylation-dependent binding to the 14-3-3 protein at two sites, one of which, Ser-205, is located several residues from the C terminus. In this study, we determined whether substitution of this residue with a non-hydrolyzable the phosphoserine/phosphothreonine mimetic would promote binding to the 14-3-3 protein and enhance cellular stability. To accomplish this, a C-terminal AANAT peptide containing the phosphonodifluoromethylene alanine at Ser-205 was synthesized and fused to bacterially expressed AANAT30–199 using expressed protein ligation. The resulting semisynthetic protein has enhanced affinity for the expressed 14-3-3 protein and exhibits greater cellular stability in microinjection experiments, as compared with the unmodified AANAT. Enhanced 14-3-3 binding was also observed using humanized ovine AANAT, which has a different C-terminal sequence (Gly-Cys) than the ovine enzyme (Asp-Arg), indicating that that characteristic is not unique to the ovine enzyme. These studies provide the first evidence that substitution of Ser-205 with the stable phosphomimetic amino acid phosphonodifluoromethylene alanine enhances binding to 14-3-3 and the cellular stability of AANAT and are consistent with the view that Ser-205 phosphorylation plays a critical role in the regulation of AANAT activity and melatonin production.


Biochemistry | 2009

Prostate-specific antigen is a "chymotrypsin-like" serine protease with unique P1 substrate specificity.

Aaron M. LeBeau; Pratap Singh; John T. Isaacs; Samuel R. Denmeade

Prostate-specific antigen (PSA), a serine protease belonging to the human kallikrein family, is best known as a prostate cancer biomarker. Emerging evidence suggests that PSA may also play a salient role in prostate cancer development and progression. With large amounts of enzymatically active PSA continuously and selectively produced by all stages of prostate cancer, PSA is an attractive target. PSA inhibitors, therefore, may represent a promising class of therapeutics and/or imaging agents. PSA displays chymotrypsin-like specificity, cleaving after hydrophobic residues, in addition to possessing a unique ability to cleave after glutamine in the P1 position. In this study, we investigated the structural motifs of the PSA S1 pocket that give it a distinct architecture and specificity when compared to the S1 pocket of chymotrypsin. Using the previously described PSA substrate Ser-Ser-Lys-Leu-Gln (SSKLQ) as a template, peptide aldehyde based inhibitors containing novel P1 aldehydes were made and tested against both proteases. Glutamine derivative aldehydes were highly specific for PSA while inhibitors with hydrophobic P1 aldehydes were potent inhibitors of both proteases with K(i) values <500 nM. The crystal structure of PSA was used to generate a model that allowed GOLD docking studies to be performed to further understand the critical interactions required for inhibitor binding to the S1 pockets of PSA and chymotrypsin. In conclusion, these results provide experimental and structural evidence that the S1 specificity pocket of PSA is distinctly different from that of chymotrypsin and that the development of highly specific PSA inhibitors is feasible.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Imaging a functional tumorigenic biomarker in the transformed epithelium

Aaron M. LeBeau; Minhee Lee; Stephanie T. Murphy; Byron Hann; Robert S. Warren; Romelyn Delos Santos; John Kurhanewicz; Samir M. Hanash; Henry F. VanBrocklin; Charles S. Craik

Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matriptase is regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Quantitative mass spectrometry allowed us to show that, in selected cancers, HAI-1 expression decreases, leading to active matriptase. A preclinical probe specific for the measurement of emergent active matriptase was developed. Using an active-site–specific, recombinant human antibody for matriptase, we found that the selective targeting of active matriptase can be used to visualize the tumorigenic epithelium. Live-cell fluorescence imaging validated the selectivity of the antibody in vitro by showing that the probe localized only to cancer cell lines with active matriptase on the surface. Immunofluorescence with the antibody documented significant levels of active matriptase in 68% of primary and metastatic colon cancer sections from tissue microarrays. Labeling of the active form of matriptase in vivo was measured in human colon cancer xenografts and in a patient-derived xenograft model using near-infrared and single-photon emission computed tomography imaging. Tumor uptake of the radiolabeled antibody, 111In-A11, by active matriptase was high in xenografts (28% injected dose per gram) and was blocked in vivo by the addition of a matriptase-specific variant of ecotin. These findings suggest, through a HAI-1–dependent mechanism, that emergent active matriptase is a functional biomarker of the transformed epithelium and that its proteolytic activity can be exploited to noninvasively evaluate tumorigenesis in vivo.


Bioorganic & Medicinal Chemistry | 2009

OPTIMIZATION OF PEPTIDE-BASED INHIBITORS OF PROSTATE-SPECIFIC ANTIGEN (PSA) AS TARGETED IMAGING AGENTS FOR PROSTATE CANCER

Aaron M. LeBeau; Sangeeta Ray Banerjee; Martin G. Pomper; Ronnie C. Mease; Samuel R. Denmeade

Prostate-specific antigen (PSA) is a serine protease biomarker that may play a role in prostate cancer development and progression. The inhibition of PSAs enzymatic activity with small molecule inhibitors is an attractive and, as of yet, unexploited target. Previously, we reported a series of peptidyl aldehyde and boronic acid based inhibitors of PSA. In this study, the structural requirements in the P2 and P3 positions of peptide-based PSA inhibitors are explored through the substitution of a series of natural and unnatural amino acids in these positions. This analysis demonstrated a preference for hydrophobic residues in the P2 position and amino acids with the potential to hydrogen bond in the P3 position. Using this information, a peptide boronic acid inhibitor with the sequence Cbz-Ser-Ser-Gln-Nle-(boro)-Leu was identified with a K(i) for PSA of 25nM. The attachment of a bulky metal chelating group to the amino terminal of this peptide did not adversely affect PSA inhibition. This result suggests that a platform of PSA inhibitor chelates could be developed as SPECT or PET-based imaging agents for prostate cancer.


Cancer Research | 2015

Imaging Active Urokinase Plasminogen Activator in Prostate Cancer

Aaron M. LeBeau; Natalia Sevillano; Kate Markham; Michael B. Winter; Stephanie T. Murphy; Daniel R. Hostetter; James West; Henry B. Lowman; Charles S. Craik; Henry F. VanBrocklin

The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to noninvasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography imaging modalities. U33 IgG labeled with (111)In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72 hours after tail vein injection of the radiolabeled probe in subcutaneous xenografts. In addition, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor-mediated mechanism in which U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the noninvasive preclinical imaging of prostate cancer lesions.


Theranostics | 2014

Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

Aaron M. LeBeau; Natalia Sevillano; Mandy L. King; Sai Duriseti; Stephanie T. Murphy; Charles S. Craik; Laura L. Murphy; Henry F. VanBrocklin

Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and 111In-single photon emission computed tomography (SPECT). Tumor uptake of the 111In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.

Collaboration


Dive into the Aaron M. LeBeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel R. Denmeade

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sai Duriseti

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Isaacs

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Pratap Singh

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Byron Hann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge